Lineární algebra
Autor vychází od n-rozměrného lineárního prostoru, jehož prvky jsou vektory, ve svých úvahách však se nezabývá prostory o nekonečném počtu rozměrů, jako je na př. prostor Hilbertův. Probírá v obsáhlých statích velkou řadu pojmů definic a vět platných pro reálný lineární prostor vícerozměrný a rozšiř...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Book |
Language: | Czech |
Published: |
Praha :
Nakladatelství Československé akademie věd,
1953
|
Edition: | 2. vyd. |
Series: | Československá akademie věd
Sekce matem. fys. |
Subjects: | |
Physical Description: | 228 s. ; 24 cm |
Summary: | Autor vychází od n-rozměrného lineárního prostoru, jehož prvky jsou vektory, ve svých úvahách však se nezabývá prostory o nekonečném počtu rozměrů, jako je na př. prostor Hilbertův. Probírá v obsáhlých statích velkou řadu pojmů definic a vět platných pro reálný lineární prostor vícerozměrný a rozšiřuje jejich platnost na prostor komplexní. Uvádíme definici base jako množiny n-lineárně nezávislých vektorů n-rozměrného prostoru, definici souřadnic a podprostoru, věty o trasformaci souřadnic, o isomorfismu a axiomatic. definici skalárního součinu jako základu, který dává prostředky k zvládnutí eukleidovské geometrie. Kniha mimo jiné věnuje dále pozornost orthogonalisačnímu procesu, nalezení orthogonálního průmětu vektoru na podprostor. stanovení jak kolmice z bodu na podprostor tak i vzdálenosti bodu od podprostoru. V dalších obsahově bohatých kapitolách se obrací k theorii lineárních, bilineárních a kvadratických forem, lineárních zobrazení a jejich kanonickému tvaru. Podává pak definici duálního prostoru Ř k prostoru R jako lineárního prostoru, jehož vektory jsou lineární funkce v R. Při současném studiu prostorů R a Ř nazývají se vektory z R kontravariantní a vektory z Ř kovariantní. Po zavedení multilineárních funkcí, které jsou jednou z možných realisací tensorů a probrání operací s tensory, podává v dodatcích poruchovou theorii a numerické metody lineární algebry. |
---|---|
Item Description: | 1-3300 výt. Věcný rejstřík Pozn. |
Bibliography: | Odkazy na lit. |