基于变分信息瓶颈的半监督神经机器翻译

变分方法是机器翻译领域的有效方法,其性能较依赖于数据量规模.然而在低资源环境下,平行语料资源匮乏,不能满足变分方法对数据量的需求,因此导致基于变分的模型翻译效果并不理想.针对该问题,本文提出基于变分信息瓶颈的半监督神经机器翻译方法,所提方法的具体思路为:首先在小规模平行语料的基础上,通过引入跨层注意力机制充分利用神经网络各层特征信息,训练得到基础翻译模型;随后,利用基础翻译模型,使用回译方法从单语语料生成含噪声的大规模伪平行语料,对两种平行语料进行合并形成组合语料,使其在规模上能够满足变分方法对数据量的需求;最后,为了减少组合语料中的噪声,利用变分信息瓶颈方法在源与目标之间添加中间表征,通过训...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 48; no. 7; pp. 1678 - 1689
Main Authors 于志强, 余正涛, 黄于欣, 郭军军, 高盛祥
Format Journal Article
LanguageChinese
Published 云南省人工智能重点实验室 昆明650500 2022
云南民族大学数学与计算机科学学院 昆明650500
昆明理工大学信息工程与自动化学院 昆明650500
云南省人工智能重点实验室 昆明650500%昆明理工大学信息工程与自动化学院 昆明650500
Subjects
Online AccessGet full text
ISSN0254-4156
DOI10.16383/j.aas.c190477

Cover

More Information
Summary:变分方法是机器翻译领域的有效方法,其性能较依赖于数据量规模.然而在低资源环境下,平行语料资源匮乏,不能满足变分方法对数据量的需求,因此导致基于变分的模型翻译效果并不理想.针对该问题,本文提出基于变分信息瓶颈的半监督神经机器翻译方法,所提方法的具体思路为:首先在小规模平行语料的基础上,通过引入跨层注意力机制充分利用神经网络各层特征信息,训练得到基础翻译模型;随后,利用基础翻译模型,使用回译方法从单语语料生成含噪声的大规模伪平行语料,对两种平行语料进行合并形成组合语料,使其在规模上能够满足变分方法对数据量的需求;最后,为了减少组合语料中的噪声,利用变分信息瓶颈方法在源与目标之间添加中间表征,通过训练使该表征具有放行重要信息、阻止非重要信息流过的能力,从而达到去除噪声的效果.多个数据集上的实验结果表明,本文所提方法能够显著地提高译文质量,是一种适用于低资源场景的半监督神经机器翻译方法.
ISSN:0254-4156
DOI:10.16383/j.aas.c190477