基于ET-PHD的自适应联合跟踪与分类算法

针对新生目标强度先验未知的扩展目标(Extended target,ET)联合跟踪与分类(Joint tracking and classification,JTC)问题,提出一种基于扩展目标概率假设密度(Extended target-probability hypothesis density,ET-PHD)滤波器的自适应联合跟踪与分类算法,并给出其高斯昆合实现方法.算法利用量测信息生成新生目标强度,在滤波预测阶段对存活目标和新生目标分别按照其类别进行传播,再引入属性量测信息,用位置和属性的联合量测似然函数代替单目标位置似然函数,对预测后所有目标强度进行联合更新,之后按照类别进行高斯项的删...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 45; no. 2; pp. 349 - 359
Main Authors 樊鹏飞, 李鸿艳
Format Journal Article
LanguageChinese
Published 空军工程大学信息与导航学院 西安710077 2019
Subjects
Online AccessGet full text
ISSN0254-4156
DOI10.16383/j.aas.2018.c170371

Cover

More Information
Summary:针对新生目标强度先验未知的扩展目标(Extended target,ET)联合跟踪与分类(Joint tracking and classification,JTC)问题,提出一种基于扩展目标概率假设密度(Extended target-probability hypothesis density,ET-PHD)滤波器的自适应联合跟踪与分类算法,并给出其高斯昆合实现方法.算法利用量测信息生成新生目标强度,在滤波预测阶段对存活目标和新生目标分别按照其类别进行传播,再引入属性量测信息,用位置和属性的联合量测似然函数代替单目标位置似然函数,对预测后所有目标强度进行联合更新,之后按照类别进行高斯项的删减与合并,提取相应类别目标的状态集.仿真结果表明,提出的自适应算法改进了概率假设密度滤波器在扩展目标跟踪中的性能.
ISSN:0254-4156
DOI:10.16383/j.aas.2018.c170371