基于值分解的多智能体深度强化学习综述

TP181; 基于值分解的多智能体深度强化学习是众多多智能体深度强化学习算法中的一类,也是多智能体深度强化学习领域的一个研究热点.它利用某种约束将多智能体系统的联合动作值函数分解为个体动作值函数的某种特定组合,能够有效解决多智能体系统中的环境非稳定性和动作空间指数爆炸等问题.文中首先说明了进行值函数分解的原因;其次,介绍了多智能体深度强化学习的基本理论;接着根据是否引入其他机制以及引入机制的不同将基于值分解的多智能体深度强化学习算法分为3类:简单因子分解型、基于IG M(个体-全局-最大)原则型以及基于注意力机制型;然后按分类重点介绍了几种典型算法并对算法的优缺点进行对比分析;最后简要阐述了所...

Full description

Saved in:
Bibliographic Details
Published in计算机科学 Vol. 49; no. 9; pp. 172 - 182
Main Authors 熊丽琴, 曹雷, 赖俊, 陈希亮
Format Journal Article
LanguageChinese
Published 陆军工程大学指挥控制工程学院 南京210007 2022
Subjects
Online AccessGet full text
ISSN1002-137X
DOI10.11896/jsjkx.210800112

Cover

More Information
Summary:TP181; 基于值分解的多智能体深度强化学习是众多多智能体深度强化学习算法中的一类,也是多智能体深度强化学习领域的一个研究热点.它利用某种约束将多智能体系统的联合动作值函数分解为个体动作值函数的某种特定组合,能够有效解决多智能体系统中的环境非稳定性和动作空间指数爆炸等问题.文中首先说明了进行值函数分解的原因;其次,介绍了多智能体深度强化学习的基本理论;接着根据是否引入其他机制以及引入机制的不同将基于值分解的多智能体深度强化学习算法分为3类:简单因子分解型、基于IG M(个体-全局-最大)原则型以及基于注意力机制型;然后按分类重点介绍了几种典型算法并对算法的优缺点进行对比分析;最后简要阐述了所提算法的应用和发展前景.
ISSN:1002-137X
DOI:10.11896/jsjkx.210800112