基于自适应Unet网络的鼻咽癌放疗危及器官自动分割方法

目的 探讨鼻咽癌放射治疗中的危及器官(OARs)的自动分割的准确性.方法 在自动分割模型研究中,经CT扫描和医生手动分割后,选取147例鼻咽癌患者的CT图像及其对应勾画的OARs结构,并对其进行完全随机化分组,分成训练集(115例)、验证集(12例)、测试集(20例).采用自适应直方图均衡化对CT图像进行预处理.利用端到端训练提高建模效率,实现一种基于三维Unet的改进网络(AUnet),将器官大小作为先验知识引入卷积核大小设计中,使网络能自适应地提取不同大小器官的特征,从而提高模型的性能.比较自动与手动分割的DSC(Dice Similarity Coefficient)系数和豪斯多夫(HD...

Full description

Saved in:
Bibliographic Details
Published in南方医科大学学报 Vol. 40; no. 11; pp. 1579 - 1586
Main Authors 杨鑫, 李学妍, 张晓婷, 宋凡, 黄思娟, 夏云飞
Format Journal Article
LanguageChinese
Published 中山大学新华学院,广东 广州 510520%中山大学肿瘤防治中心//华南肿瘤学国家重点实验室//肿瘤医学协同创新中心//广东省鼻咽癌诊治研究重点实验室,广东 广州 510060 2020
广东工业大学,广东 广州 510006
中山大学肿瘤防治中心//华南肿瘤学国家重点实验室//肿瘤医学协同创新中心//广东省鼻咽癌诊治研究重点实验室,广东 广州 510060%中山大学肿瘤防治中心//华南肿瘤学国家重点实验室//肿瘤医学协同创新中心//广东省鼻咽癌诊治研究重点实验室,广东 广州 510060
Subjects
Online AccessGet full text
ISSN1673-4254
DOI10.12122/j.issn.1673-4254.2020.11.07

Cover

More Information
Summary:目的 探讨鼻咽癌放射治疗中的危及器官(OARs)的自动分割的准确性.方法 在自动分割模型研究中,经CT扫描和医生手动分割后,选取147例鼻咽癌患者的CT图像及其对应勾画的OARs结构,并对其进行完全随机化分组,分成训练集(115例)、验证集(12例)、测试集(20例).采用自适应直方图均衡化对CT图像进行预处理.利用端到端训练提高建模效率,实现一种基于三维Unet的改进网络(AUnet),将器官大小作为先验知识引入卷积核大小设计中,使网络能自适应地提取不同大小器官的特征,从而提高模型的性能.比较自动与手动分割的DSC(Dice Similarity Coefficient)系数和豪斯多夫(HD)距离以验证AUnet网络的有效性.结果 测试集的平均DSC和HD分别为0.86±0.02和4.0±2.0 mm.除视神经、视交叉外,AUnet与手动分割结果无统计学差异(P>0.05).结论 引入自适应机制后,AUnet能较为准确地实现基于CT图像对鼻咽癌的危及器官的自动分割,临床应用中可大幅度提高医生的工作效率及分割的一致性.
ISSN:1673-4254
DOI:10.12122/j.issn.1673-4254.2020.11.07