一种基于目标函数的局部离群点检测方法

TP301.6; 针对传统的基于密度的局部离群点检测算法对原始数据集没有进行预处理导致该算法在面对未知数据集时检测效果不理想,又由于其需要计算每一个数据点的离群因子,在数据量过多时,计算量大大增加的问题,通过对局部离群点检测算法的分析,提出了一种基于目标函数的局部离群点检测方法FOLOF(FCM objective function-based LOF).首先,使用肘部法则确定数据集的最佳聚类个数;然后,通过FCM的目标函数对数据集进行剪枝,得到离群点候选集;最后,利用加权局部离群因子检测算法计算候选集中每个点的离群程度.利用该方法在人工数据集和UCI数据集上进行了相关实验,并与其他相关方法进...

Full description

Saved in:
Bibliographic Details
Published in东北大学学报(自然科学版) Vol. 43; no. 10; pp. 1405 - 1412
Main Authors 周玉, 朱文豪, 孙红玉
Format Journal Article
LanguageChinese
Published 华北水利水电大学 电力学院, 河南 郑州 450011 2022
Subjects
Online AccessGet full text
ISSN1005-3026
DOI10.12068/j.issn.1005-3026.2022.10.006

Cover

More Information
Summary:TP301.6; 针对传统的基于密度的局部离群点检测算法对原始数据集没有进行预处理导致该算法在面对未知数据集时检测效果不理想,又由于其需要计算每一个数据点的离群因子,在数据量过多时,计算量大大增加的问题,通过对局部离群点检测算法的分析,提出了一种基于目标函数的局部离群点检测方法FOLOF(FCM objective function-based LOF).首先,使用肘部法则确定数据集的最佳聚类个数;然后,通过FCM的目标函数对数据集进行剪枝,得到离群点候选集;最后,利用加权局部离群因子检测算法计算候选集中每个点的离群程度.利用该方法在人工数据集和UCI数据集上进行了相关实验,并与其他相关方法进行了对比,结果显示,该算法能够提高离群点检测精度,减少计算量,有效提高离群点检测性能.
ISSN:1005-3026
DOI:10.12068/j.issn.1005-3026.2022.10.006