부분 민감 정보를 포함한 안전한 SVM 학습 방법론

본 연구에서는 민감 정보가 포함된 경우의 서포트 벡터 머신 (SVM) 학습 알고리즘을 제안한다. 기계 학습 모형들이 실세계의 자동화된 의사 결정을 가능하게 하였지만 규제들은 프라이버시 보호를 위해서 민감 정보들의 활용을 제한하고 있다. 특히 인종, 성별, 장애 여부와 같은 법적으로 보호되는 정보들의 프라이버시 보호는 필수이다. 본 연구에서는 완전 동형암호를 활용하여 부분적인 민감 정보가 포함된 경우에 최소 제곱 SVM (LSSVM) 모형을 효율적으로 학습할 수 있는 방법을 제안한다. 본 프레임워크에서는 데이터 소유주가 민감하지 않은...

Full description

Saved in:
Bibliographic Details
Published in한국컴퓨터정보학회논문지, 26(4) pp. 1 - 9
Main Author 박새롬
Format Journal Article
LanguageKorean
Published 한국컴퓨터정보학회 01.04.2021
Subjects
Online AccessGet full text
ISSN1598-849X
2383-9945
DOI10.9708/jksci.2021.26.04.001

Cover

More Information
Summary:본 연구에서는 민감 정보가 포함된 경우의 서포트 벡터 머신 (SVM) 학습 알고리즘을 제안한다. 기계 학습 모형들이 실세계의 자동화된 의사 결정을 가능하게 하였지만 규제들은 프라이버시 보호를 위해서 민감 정보들의 활용을 제한하고 있다. 특히 인종, 성별, 장애 여부와 같은 법적으로 보호되는 정보들의 프라이버시 보호는 필수이다. 본 연구에서는 완전 동형암호를 활용하여 부분적인 민감 정보가 포함된 경우에 최소 제곱 SVM (LSSVM) 모형을 효율적으로 학습할 수 있는 방법을 제안한다. 본 프레임워크에서는 데이터 소유주가 민감하지 않은 정보와 민감한 정보 모두를 가지고 있고, 이를 기계학습 서비스 제공자에게 제공할 때에 민감 정보만 암호화해서 제공하는 것을 가정한다. 결과적으로 데이터 소유자는 민감 정보를 노출시키지 않으면서도 암호화된 상태로 모형의 학습정보를 얻을 수 있다. 모형을 실제 활용할 경우에는 모든 정보를 암호화하여 안전하게 예측 결과를제공할 수 있도록 한다. 실제 데이터에 대한 실험을 통해 본 알고리즘이 동형암호로 구현될 경우에원래의 LSSVM 모형과 비슷한 성능을 가질 수 있음을 확인해 볼 수 있었다. 또한, 개선된 효율적인알고리즘에 대한 실험은 적은 성능 저하로 큰 연산 효율성을 달성할 가능성을 입증하였다. In this paper, we propose a training algorithm of support vector machine (SVM) with a sensitive variable. Although machine learning models enable automatic decision making in the real world applications, regulations prohibit sensitive information from being used to protect privacy. In particular, the privacy protection of the legally protected attributes such as race, gender, and disability is compulsory. We present an efficient least square SVM (LSSVM) training algorithm using a fully homomorphic encryption (FHE) to protect a partial sensitive attribute. Our framework posits that data owner has both non-sensitive attributes and a sensitive attribute while machine learning service provider (MLSP) can get non-sensitive attributes and an encrypted sensitive attribute. As a result, data owner can obtain the encrypted model parameters without exposing their sensitive information to MLSP. In the inference phase, both non-sensitive attributes and a sensitive attribute are encrypted, and all computations should be conducted on encrypted domain. Through the experiments on real data, we identify that our proposed method enables to implement privacy-preserving sensitive LSSVM with FHE that has comparable performance with the original LSSVM algorithm. In addition, we demonstrate that the efficient sensitive LSSVM with FHE significantly improves the computational cost with a small degradation of performance. KCI Citation Count: 0
ISSN:1598-849X
2383-9945
DOI:10.9708/jksci.2021.26.04.001