Spoofing 2D face recognition systems with 3D masks

Vulnerability to spoofing attacks is a serious drawback for many biometric systems. Among all biometric traits, face is the one that is exposed to the most serious threat, since it is exceptionally easy to access. The limited work on fraud detection capabilities for face mainly shapes around 2D atta...

Full description

Saved in:
Bibliographic Details
Published in2013 International Conference of the BIOSIG Special Interest Group (BIOSIG) pp. 1 - 8
Main Authors Erdogmus, Nesli, Marcel, Sebastien
Format Conference Proceeding
LanguageEnglish
Published Gesellschaft für Informatik e.V. (GI) 01.09.2013
Subjects
Online AccessGet full text

Cover

More Information
Summary:Vulnerability to spoofing attacks is a serious drawback for many biometric systems. Among all biometric traits, face is the one that is exposed to the most serious threat, since it is exceptionally easy to access. The limited work on fraud detection capabilities for face mainly shapes around 2D attacks forged by displaying printed photos or replaying recorded videos on mobile devices. A significant portion of this work is based on the flatness of the facial surface in front of the sensor. In this study, we complicate the spoofing problem further by introducing the 3 rd dimension and examine possible 3D attack instruments. A small database is constructed with six different types of 3D facial masks and experimented on to determine the right direction to study 3D attacks. Spoofing performance for each type of mask is assessed and analysed thoroughly using two Gabor-wavelet-based algorithms.