Multivarijabilni algoritam optimizacije podučavanjem-učenjem (MTLBO) za procjenu strukturnih parametara podzemnih objekata pomoću magnetskih podataka

U ovom radu je predstavljen prirodno utemeljen multivarijabilni algoritam optimizacije poučavanjem-učenjem (MTLBO). MTLBO algoritam tijekom iterativnog postupka može procijeniti najbolje vrijednosti parametara podzemnih struktura (model) u višepredmetnom problemu. Algoritam djeluje u dvije računske...

Full description

Saved in:
Bibliographic Details
Published inGeofizika Vol. 37; no. 2; p. 213
Main Authors Eshaghzadeh, Ata, Sahebari, Sanaz Seyedi
Format Paper
LanguageCroatian
English
Published Andrija Mohorovicic Geophysical Institute 23.12.2020
Subjects
Online AccessGet full text
ISSN0352-3659
1846-6346
DOI10.15233/gfz.2020.37.6

Cover

Abstract U ovom radu je predstavljen prirodno utemeljen multivarijabilni algoritam optimizacije poučavanjem-učenjem (MTLBO). MTLBO algoritam tijekom iterativnog postupka može procijeniti najbolje vrijednosti parametara podzemnih struktura (model) u višepredmetnom problemu. Algoritam djeluje u dvije računske faze: fazi učitelja i fazi učenika. Glavna svrha algoritma MTLBO je mijenjati naučene vrijednosti te poboljšavajući tako vrijednosti parametara modela dovesti do optimalnog rješenja. Varijable svakog učenika (model) su: dubina (z), koeficijent amplitude (k), faktor oblika (q), kut učinkovite magnetizacije (θ) i parametri osi (x0). U radu je korištena MTLBO metoda na podacima magnetskih anomalija uzrokovanih podzemnim strukturama jednostavnog geometrijskog oblika, poput sfere i vodoravno postavljenog cilindra. Učinkovitost MTLBO metode također je proučavana na šumom kontaminiranim sintetičkim podacima, budući da su dobiveni prihvatljivi rezultati. MTLBO metoda je primijenjena za interpretaciju četiri profila magnetske anomalije u Iranu, Brazilu i Indiji.
AbstractList U ovom radu je predstavljen prirodno utemeljen multivarijabilni algoritam optimizacije poučavanjem-učenjem (MTLBO). MTLBO algoritam tijekom iterativnog postupka može procijeniti najbolje vrijednosti parametara podzemnih struktura (model) u višepredmetnom problemu. Algoritam djeluje u dvije računske faze: fazi učitelja i fazi učenika. Glavna svrha algoritma MTLBO je mijenjati naučene vrijednosti te poboljšavajući tako vrijednosti parametara modela dovesti do optimalnog rješenja. Varijable svakog učenika (model) su: dubina (z), koeficijent amplitude (k), faktor oblika (q), kut učinkovite magnetizacije (θ) i parametri osi (x0). U radu je korištena MTLBO metoda na podacima magnetskih anomalija uzrokovanih podzemnim strukturama jednostavnog geometrijskog oblika, poput sfere i vodoravno postavljenog cilindra. Učinkovitost MTLBO metode također je proučavana na šumom kontaminiranim sintetičkim podacima, budući da su dobiveni prihvatljivi rezultati. MTLBO metoda je primijenjena za interpretaciju četiri profila magnetske anomalije u Iranu, Brazilu i Indiji.
Abstract_FL This paper presents a nature-based algorithm, titled multivariable teaching-learning-based optimization (MTLBO) algorithm. MTLBO algorithm during an iterative process can estimates the best values of the buried structure (model) parameters in a multi-objective problem. The algorithm works in two computational phases: the teacher phase and the learner phase. The major purpose of the MTLBO algorithm is to modify the value of the learners and thus, improving the value of the model parameters which leads to the optimal solution. The variables of each learner (model) are the depth (z), amplitude coefficient (k), shape factor (q), angle of effective magnetization (θ) and axis location (x0) parameters. We employ MTLBO method for the magnetic anomalies caused by the buried structures with a simple geometric shape such as sphere and horizontal cylinder. The efficiency of the MTLBO is also studied by noise corruption synthetic data, as the acceptable results were obtained. We have applied the MTLBO for the interpretation of the four magnetic anomaly profiles from Iran, Brazil and India.
Author Sahebari, Sanaz Seyedi
Eshaghzadeh, Ata
Author_xml – sequence: 1
  givenname: Ata
  orcidid: 0000-0003-0665-0517
  surname: Eshaghzadeh
  fullname: Eshaghzadeh, Ata
  organization: Department of Geology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
– sequence: 2
  givenname: Sanaz Seyedi
  surname: Sahebari
  fullname: Sahebari, Sanaz Seyedi
  organization: Roshdiyeh Higher Education Institute, Tabriz, Iran
BookMark eNqVjL1OwzAURi1UJFJgZfYIQ4JjJ25YQSAGKpbu0W3qpnZiO_JPJfICTOw8UB-MRPACLPc7Ove7d4kWxhqB0E1OsrykjN23-zGjhJKMrTJ-hpK8KnjKWcEXKCGspCnj5cMFWnqvCGHFpBL0vY59kEdwUsFW9kZi6FvrZACN7RCkliM0Ugk82F08fcERjBI6nVDMgG_Xm7fH9zs8Ah6cbZQwEfvgYheiM_KAB3CgRZjm_GEUepZ2q0QHYVbanj4j1tAaEXw3H9jdtOngCp3voffi-i8vUfryvHl6TQ-uga4enNTgPmoLsv413jViwpoWFa9W7L_9H0Y5bqo
ContentType Paper
DBID VP8
DOI 10.15233/gfz.2020.37.6
DatabaseName Portal of Croatian Scientific and Professional Journals – HRČAK
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitle_FL Multivariable teaching-learning-based optimization (MTLBO) algorithm for estimating the structural parameters of the buried mass by magnetic data
EISSN 1846-6346
ExternalDocumentID oai_hrcak_srce_hr_248687
GroupedDBID 02
29H
2WC
5GY
ABDBF
ABPTK
ADACO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BBORY
BCNDV
E3Z
EBS
EJD
ESX
GROUPED_DOAJ
IAO
MM-
M~E
OBODZ
OK1
P2P
RNS
VP8
ID FETCH-hrcak_primary_oai_hrcak_srce_hr_2486873
ISSN 0352-3659
IngestDate Thu Dec 31 04:13:18 EST 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language Croatian
English
License cc-by-nc: openAccess
LinkModel OpenURL
MergedId FETCHMERGED-hrcak_primary_oai_hrcak_srce_hr_2486873
Notes 248687
ORCID 0000-0003-0665-0517
OpenAccessLink https://hrcak.srce.hr/248687
ParticipantIDs hrcak_primary_oai_hrcak_srce_hr_248687
ProviderPackageCode VP8
PublicationCentury 2000
PublicationDate 2020-12-23
PublicationDateYYYYMMDD 2020-12-23
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-23
  day: 23
PublicationDecade 2020
PublicationTitle Geofizika
PublicationYear 2020
Publisher Andrija Mohorovicic Geophysical Institute
Publisher_xml – name: Andrija Mohorovicic Geophysical Institute
SSID ssj0034035
Score 3.2253025
Snippet U ovom radu je predstavljen prirodno utemeljen multivarijabilni algoritam optimizacije poučavanjem-učenjem (MTLBO). MTLBO algoritam tijekom iterativnog...
SourceID hrcak
SourceType Open Access Repository
StartPage 213
SubjectTerms magnetic
magnetski
MTLBO algoritam
MTLBO algorithm
multi-objective problem
multi-objektni problem
optimizacija
optimization
Title Multivarijabilni algoritam optimizacije podučavanjem-učenjem (MTLBO) za procjenu strukturnih parametara podzemnih objekata pomoću magnetskih podataka
URI https://hrcak.srce.hr/248687
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NQED7ULYJvXvHOeRBRQmrNSZO8bt1dF3FV2Ar7tkzSaXMxSWkTwfwBn_bdH1T8Xc7k1nSpUH05JCfJcM6Zj7kxMxHixUyZtuEOHX00A8UOiqmDcmY6mEDmMb61HcUFzmefrNOv5oeL0UWv97uTtZRn7sArdtaV_A9XaY74ylWy_8DZlihN0DXxl0biMI178bisnv1O3m7IfXKTQINv85S9_VhLSRTEQQFeEKK2SKd5aTUeARnOIcZ6fYt8w0bm2eTj-DNHCArglC0vxCTnOpI8IpWUBL7GLcJjzGhkagXGPJm6IUaQ8VSclhTtXIthnmC2ivijlBNQI-hawO-RtlwEUasOjlc-zP0CplhGeA6z9sk5cNvaqhT-HBIoSLL9IGXbjVQYZdZHVUxcYSuZ8nmQsPJTDpd4gceB_0WDxzY7oiMCyTzUlVX3DMdKRJPFpFuqDlzWMrxqHFNj1dgSyGqnoiD_mztWzGfFgJc6UPZgR0fua5pyqye3v_Qg4l8fI11eGqZjOfYN0TdIu5CC6B-Oj8YnjU2gzGH1q9dmP3X7UF7Fm601kI9UEu4YOZPbov8FFri8I3r-8q64WeYGe6t74td1mMkWZrILM8kwW1-1EFtflfCSr0pwvZYFyAZasgMtuYGWbKElG2hJhtb6Zy43sJINrO4L_eR48u5Urw5pUTVOufzbsakH4iBJE3wopOkMPdIKYKBlmZbhOt7IHVqAI8PEKdrWI_FyP5qP933xibi1AetTcUD7x2dkaGbu85qLfwACiJL6
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivarijabilni+algoritam+optimizacije+podu%C4%8Davanjem-u%C4%8Denjem+%28MTLBO%29+za+procjenu+strukturnih+parametara+podzemnih+objekata+pomo%C4%87u+magnetskih+podataka&rft.jtitle=Geofizika&rft.au=Eshaghzadeh%2C+Ata&rft.au=Sahebari%2C+Sanaz+Seyedi&rft.date=2020-12-23&rft.pub=Andrija+Mohorovicic+Geophysical+Institute&rft.issn=0352-3659&rft.eissn=1846-6346&rft.volume=37&rft.issue=2&rft.spage=213&rft_id=info:doi/10.15233%2Fgfz.2020.37.6&rft.externalDBID=n%2Fa&rft.externalDocID=oai_hrcak_srce_hr_248687
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fhrcak.srce.hr%2Flogo_broj%2F19773.jpg