一种基于多源大数据的城市停车分区方法及分区系统
本发明提供一种基于多源大数据的城市停车分区方法及分区系统,首先确定停车分区的研究主体与分区对象,并将各类数据集计到交通小区上;其次通过相关性分析识别有效的数据特征维度,完成数据维度筛选;然后采用加权改进的K-均值聚类算法识别交通小区所属的聚类,并采用凝聚聚类算法合并相似聚类;最后利用路网、行政边界构造停车分区,将交通小区的聚类属性映射其上,从而获得具备分区属性的、实操性强的停车分区。该分区方法及分区系统可求解多种应用场景下的城市停车分区,其科学性、合理性、求解效率、可实施性高,可以为城市停车分区的差异化管理提供技术支撑。 The invention provides an urban park...
Saved in:
| Format | Patent |
|---|---|
| Language | Chinese |
| Published |
22.11.2024
|
| Subjects | |
| Online Access | Get full text |
Cover
| Summary: | 本发明提供一种基于多源大数据的城市停车分区方法及分区系统,首先确定停车分区的研究主体与分区对象,并将各类数据集计到交通小区上;其次通过相关性分析识别有效的数据特征维度,完成数据维度筛选;然后采用加权改进的K-均值聚类算法识别交通小区所属的聚类,并采用凝聚聚类算法合并相似聚类;最后利用路网、行政边界构造停车分区,将交通小区的聚类属性映射其上,从而获得具备分区属性的、实操性强的停车分区。该分区方法及分区系统可求解多种应用场景下的城市停车分区,其科学性、合理性、求解效率、可实施性高,可以为城市停车分区的差异化管理提供技术支撑。
The invention provides an urban parking zoning method and zoning system based on multi-source big data, and the method comprises the steps: firstly determining a research subject and a zoning object of parking zoning, and enabling various data sets to be recorded on a traffic zone; secondly, effective data feature dimensions are identified through correlation analysis, and data dimension screening is completed; then, a weighted improved K-means clustering algorithm is adopted to identify clusters to which the traffic cells belong, and a condensation clustering algorithm is adopted to merge similar clusters; and finally, constructing a parking zone by using a road network and an administrative boundary, and mapping the clustering attribute of the traf |
|---|---|
| Bibliography: | Application Number: CN202311325162 |