基于多层前馈神经网络加权提高全球平均测高精度方法
基于多层前馈神经网络加权提高全球平均测高精度方法,包括:明确星座构型对GNSS-R测高能力的影响,构建多层前馈神经网络加权预测模型并进行验证,最后利用该模型进行星载GNSS-R测高能力预测。本发明解决了不同仿真条件下星载GNSS-R测高能力评估复杂的问题,显著提高了测高精度的计算效率。 A method for improving global average altimetry precision based on multi-layer feed-forward neural network weighting comprises the steps that the influence...
Saved in:
| Format | Patent |
|---|---|
| Language | Chinese |
| Published |
17.06.2025
|
| Subjects | |
| Online Access | Get full text |
Cover
| Summary: | 基于多层前馈神经网络加权提高全球平均测高精度方法,包括:明确星座构型对GNSS-R测高能力的影响,构建多层前馈神经网络加权预测模型并进行验证,最后利用该模型进行星载GNSS-R测高能力预测。本发明解决了不同仿真条件下星载GNSS-R测高能力评估复杂的问题,显著提高了测高精度的计算效率。
A method for improving global average altimetry precision based on multi-layer feed-forward neural network weighting comprises the steps that the influence of constellation configuration on GNSS-R altimetry capacity is determined, a multi-layer feed-forward neural network weighting prediction model is constructed and verified, and finally satellite-borne GNSS-R altimetry capacity prediction is conducted through the model. According to the method, the problem that satellite-borne GNSS-R height measurement capability evaluation is complex under different simulation conditions is solved, and the calculation efficiency of height measurement precision is remarkably improved. |
|---|---|
| Bibliography: | Application Number: CN202211599173 |