基于数字散斑的复合材料构件多源噪声滤除方法
本发明提出了一种基于数字散斑的复合材料构件多源噪声滤除方法,用于解决采集的数字散斑图的测量灵敏度低、精度低的技术问题;其步骤为:首先,利用数字散斑光路分别采集一幅物体变形前后的数字散斑图,利用傅里叶变换提取数字散斑图的相位信息,获得复合材料构件缺陷图;其次,对复合材料构件缺陷图进行同态变换,将乘性噪声转换为加性噪声;然后利用压缩感知理论对加性噪声进行滤波,滤除复合材料构件缺陷图中的乘性噪声;最后,采用矩阵奇异值分解算法滤除复合材料构件缺陷图中的加性噪声,得到降噪后的构件缺陷图。本发明利用K-SVD算法去噪能够很好的恢复原始图像的细节部分,并去除高斯白噪声,提高去噪图像的PSNR值。 The i...
        Saved in:
      
    
          | Format | Patent | 
|---|---|
| Language | Chinese | 
| Published | 
          
        17.10.2025
     | 
| Subjects | |
| Online Access | Get full text | 
Cover
| Summary: | 本发明提出了一种基于数字散斑的复合材料构件多源噪声滤除方法,用于解决采集的数字散斑图的测量灵敏度低、精度低的技术问题;其步骤为:首先,利用数字散斑光路分别采集一幅物体变形前后的数字散斑图,利用傅里叶变换提取数字散斑图的相位信息,获得复合材料构件缺陷图;其次,对复合材料构件缺陷图进行同态变换,将乘性噪声转换为加性噪声;然后利用压缩感知理论对加性噪声进行滤波,滤除复合材料构件缺陷图中的乘性噪声;最后,采用矩阵奇异值分解算法滤除复合材料构件缺陷图中的加性噪声,得到降噪后的构件缺陷图。本发明利用K-SVD算法去噪能够很好的恢复原始图像的细节部分,并去除高斯白噪声,提高去噪图像的PSNR值。
The invention provides a multi-source noise filtering method for a composite material component based on digital speckles, which is used for solving the technical problems of low measurement sensitivity and low precision of an acquired digital speckle pattern. The method comprises the following steps: firstly, respectively acquiring digital speckle patterns before and after deformation of an object by utilizing a digital speckle light path, and extracting phase information of the digital speckle patterns by utilizing Fourier transform to obtain a defect pattern of the composite material component; secondly, homomorphic transformation is carried out on the defect graph of the composite material component, and multiplicat | 
|---|---|
| Bibliography: | Application Number: CN202211312627 |