一种用于智能语音助手的对话短文本语句匹配方法

本发明涉及一种用于智能语音助手的对话短文本语句匹配方法,属于人工智能技术领域。该方法包括:S1:对智能语音助手对话系统中的文本数据进行向量化,使用堆叠CNN和并行CNN提取文本的短语特征;S2:使用堆叠的BiLSTM提取上下文特征,再经过新的句内自注意力机制,提取文本内部的关键特征;S3:使用句间注意力机制提取交互特征,并通过压缩函数将多个交互特效进行聚合压缩,得到文本的匹配特征;S4:将匹配特征输入MLP中,预测出文本的标签并进行后处理。本发明可以有效地对智能语音助手的对话文本进行语句匹配,预测两个文本是否属于同一语义。 The invention relates to a dialogue...

Full description

Saved in:
Bibliographic Details
Format Patent
LanguageChinese
Published 30.08.2024
Subjects
Online AccessGet full text

Cover

More Information
Summary:本发明涉及一种用于智能语音助手的对话短文本语句匹配方法,属于人工智能技术领域。该方法包括:S1:对智能语音助手对话系统中的文本数据进行向量化,使用堆叠CNN和并行CNN提取文本的短语特征;S2:使用堆叠的BiLSTM提取上下文特征,再经过新的句内自注意力机制,提取文本内部的关键特征;S3:使用句间注意力机制提取交互特征,并通过压缩函数将多个交互特效进行聚合压缩,得到文本的匹配特征;S4:将匹配特征输入MLP中,预测出文本的标签并进行后处理。本发明可以有效地对智能语音助手的对话文本进行语句匹配,预测两个文本是否属于同一语义。 The invention relates to a dialogue short text statement matching method for an intelligent voice assistant, and belongs to the technical field of artificial intelligence. The method comprises the following steps: S1, vectorizing text data in an intelligent voice assistant dialogue system, and extracting phrase features of a text by using a stacked CNN and a parallel CNN; s2, using stacked BiLSTM to extract context features, and extracting key features in a text through a new in-sentence self-attention mechanism; s3, extracting interaction features by using an inter-sentence attention mechanism, and aggregating and compressing the plurality of interaction special effects through a compression function to obtain matching features of the text; and S4,
Bibliography:Application Number: CN202111422626