一种不完备数据驱动的数控机床切削能耗预测建模方法
本发明考虑到了数控机床切削能耗预测的数据不完备情况,根据分析数据的缺失机制和模式,进行数据过滤、缺失率估计、变量相关性分析,同时采用基于生成对抗网络的缺失数据估算法进行缺失值填补,基于此,建立基于基因表达式编程的数控机床切削能耗预测模型,并进行了交叉验证,为不完备的数据下机床切削能耗预测建模提供了一种新的解决方法。 According to the method, the data incompleteness condition of numerical control machine tool cutting energy consumption prediction is conside...
Saved in:
| Format | Patent |
|---|---|
| Language | Chinese |
| Published |
31.05.2022
|
| Subjects | |
| Online Access | Get full text |
Cover
| Summary: | 本发明考虑到了数控机床切削能耗预测的数据不完备情况,根据分析数据的缺失机制和模式,进行数据过滤、缺失率估计、变量相关性分析,同时采用基于生成对抗网络的缺失数据估算法进行缺失值填补,基于此,建立基于基因表达式编程的数控机床切削能耗预测模型,并进行了交叉验证,为不完备的数据下机床切削能耗预测建模提供了一种新的解决方法。
According to the method, the data incompleteness condition of numerical control machine tool cutting energy consumption prediction is considered; according to a missing mechanism and a missing mode ofthe analysis data, data filtering, missing rate estimation and variable correlation analysis are carried out; meanwhile, a missing data estimation method based on a generative adversarial network isadopted for missing value filling. Therefore, a numerical control machine tool cutting energy consumption prediction model based on gene expression programming is established, cross validation is carried out, and a novel solution is provided for machine tool cutting energy consumption prediction modeling under incomplete data. |
|---|---|
| Bibliography: | Application Number: CN202010606597 |