一种基于图像统计学的复杂表格交点聚类提取方法
本发明公开了一种基于图像统计学的复杂表格交点聚类提取方法。其采用的方法步骤为1:待分割表格图像预处理阶段:将多分辨率的图像数据进行压缩灰度化,使用OTSU进行二值化图像,为后续直线拟合阶段鉴定基础;2:横向直线方程拟合阶段:通过横向投影直方图统计,结合统计学计量得到横向长直线方程;3:纵向直线方程拟合阶段:通过纵向投影直方图统计,结合统计学计量得到纵向长直线方程;4:单元格分割处理阶段:通过直线方程的横纵交叉确定横纵坐标,实现单元格的分割并进行非文字区域的剔除。该方法经过实际测试具备较强的鲁棒性和自适应性,提高了表格交点检测准确率,在输入纵向有效聚类数目的前提下,交点检测率可达100%,具有一...
Saved in:
Format | Patent |
---|---|
Language | Chinese |
Published |
02.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Summary: | 本发明公开了一种基于图像统计学的复杂表格交点聚类提取方法。其采用的方法步骤为1:待分割表格图像预处理阶段:将多分辨率的图像数据进行压缩灰度化,使用OTSU进行二值化图像,为后续直线拟合阶段鉴定基础;2:横向直线方程拟合阶段:通过横向投影直方图统计,结合统计学计量得到横向长直线方程;3:纵向直线方程拟合阶段:通过纵向投影直方图统计,结合统计学计量得到纵向长直线方程;4:单元格分割处理阶段:通过直线方程的横纵交叉确定横纵坐标,实现单元格的分割并进行非文字区域的剔除。该方法经过实际测试具备较强的鲁棒性和自适应性,提高了表格交点检测准确率,在输入纵向有效聚类数目的前提下,交点检测率可达100%,具有一定的创新可拓展性和实际可行性。
The invention discloses a complex table intersection clustering extraction method based on image statistics. The method comprises the following steps: 1, performing a to-be-segmented table image preprocessing stage: carrying out compression graying on multi-resolution image data, and carrying out binarization on an image by using OTSU to serve as an identification basis of a subsequent straight line fitting stage; 2, performing a transverse linear equation fitting stage: obtaining a transverse long linear equation through transverse projection histogram statistics in combination with statistical measurement; 3, performing a longitudinal linear equation fitting stage: obtaining a longitudinal long li |
---|---|
Bibliography: | Application Number: CN202010564503 |