电动汽车磁耦合无线充电系统的最大效率跟踪方法
本发明公开了种电动汽车磁耦合无线充电系统的最大效率跟踪方法,首先通过初始电源激励频率推导出发射和接收线圈之间的互感,将适应度函数变为只与频率有关的函数;将般粒子群算法中的粒子群规模分开设定,分别为最大粒子群规模=30和最小粒子群规模=2,粒子群规模随着迭代次数增加而逐渐减小。本粒子群算法减去冗余粒子,改变粒子群规模,精简算法,加快了算法收敛速度。本发明粒子群算法不但使得粒子规模选取有据可依,且算法在搜索前期具有较大自我学习能力和社会学习能力,在搜索后期,加快收敛速度,算法搜索时间减小。 The invention discloses a maximum efficiency tracking...
Saved in:
| Format | Patent |
|---|---|
| Language | Chinese |
| Published |
01.12.2017
|
| Subjects | |
| Online Access | Get full text |
Cover
| Summary: | 本发明公开了种电动汽车磁耦合无线充电系统的最大效率跟踪方法,首先通过初始电源激励频率推导出发射和接收线圈之间的互感,将适应度函数变为只与频率有关的函数;将般粒子群算法中的粒子群规模分开设定,分别为最大粒子群规模=30和最小粒子群规模=2,粒子群规模随着迭代次数增加而逐渐减小。本粒子群算法减去冗余粒子,改变粒子群规模,精简算法,加快了算法收敛速度。本发明粒子群算法不但使得粒子规模选取有据可依,且算法在搜索前期具有较大自我学习能力和社会学习能力,在搜索后期,加快收敛速度,算法搜索时间减小。
The invention discloses a maximum efficiency tracking method of an electric automobile magnetic coupling wireless charging system. First of all, mutual inductance between an emission coil and a receiving coil is derived through an initial power supply extraction frequency, and a fitness function is converted into an only frequency-related function; and particle swarm scale in a general particle swarm algorithm is set apart, which is respectively a maximum particle swarm scale Nmax=30 and a minimum particle swarm scale Nmin=2, and the particle swarm scale is gradually decreased as the iteration frequency is increased. According to the invention, redundant particles are reduced from a particle swarm algorithm, the particle swarm scale is changed, the algorithm is concis |
|---|---|
| Bibliography: | Application Number: CN20151559048 |