Ho and Ti co-doped BiFe03 multiferroic ceramics with enhanced magnetization and ultrahigh electrical resistivity

Bio.9HOo.lFeo.9503 and Bio.9HOo.lFeo.9Tio.0503 ceramics were prepared and compared to reveal the effects of Ho and Ti codoping in BiFeO3. X-ray diffraction indicated that both ceramics had a high rhombohedral perovskite phase content, and microstructural analyses showed that the grains of the Bio.9H...

Full description

Saved in:
Bibliographic Details
Published in中国物理B:英文版 no. 3; pp. 518 - 521
Main Author 谷艳红 刘雍 姚超 马衍伟 王雨 陈王丽华 陈万平
Format Journal Article
LanguageEnglish
Published 2014
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834

Cover

More Information
Summary:Bio.9HOo.lFeo.9503 and Bio.9HOo.lFeo.9Tio.0503 ceramics were prepared and compared to reveal the effects of Ho and Ti codoping in BiFeO3. X-ray diffraction indicated that both ceramics had a high rhombohedral perovskite phase content, and microstructural analyses showed that the grains of the Bio.9HOo.lFeo.9Tio.0503 ceramics were much smaller than those of Bio.9HOo.lFeo.9503. An electrical resistivity of more than 1 × 1014.cm at room temperature, and a magnetic hysteresis loop with a remnant magnetization 2Mr of 0.485 emu/g were obtained for Bi0.9HO0.1Fe0.9Ti0.0503; both were much higher than those of Bio.9Hoo.1Feo.9503. Changes in the defect subsystem of BiFeO3 induced by Fe-deficiency and (Ho,Ti) codoping are proposed as being responsible for the improvement in the properties.
Bibliography:11-5639/O4
BiFeO3, multiferroics, magnetism, resistivity
Bio.9HOo.lFeo.9503 and Bio.9HOo.lFeo.9Tio.0503 ceramics were prepared and compared to reveal the effects of Ho and Ti codoping in BiFeO3. X-ray diffraction indicated that both ceramics had a high rhombohedral perovskite phase content, and microstructural analyses showed that the grains of the Bio.9HOo.lFeo.9Tio.0503 ceramics were much smaller than those of Bio.9HOo.lFeo.9503. An electrical resistivity of more than 1 × 1014.cm at room temperature, and a magnetic hysteresis loop with a remnant magnetization 2Mr of 0.485 emu/g were obtained for Bi0.9HO0.1Fe0.9Ti0.0503; both were much higher than those of Bio.9Hoo.1Feo.9503. Changes in the defect subsystem of BiFeO3 induced by Fe-deficiency and (Ho,Ti) codoping are proposed as being responsible for the improvement in the properties.
ISSN:1674-1056
2058-3834