基于改进深度置信网络的智能电网暂态安全状态感知
深度学习是感知智能电网暂态安全状态的有效方法,针对多层重构学习过程低维特征及结构参数难以全局寻优的问题,提出了一种改进深度置信网络(Deep Belief Network,DBN)方法.首先,该方法利用SMOTE过采样算法,增加样本多样性,促使DBN深层架构的挖掘.其次,直接面向噪声样本,DBN通过网络中各神经元吉布斯抽样的二值状态,增强重构特征的抗噪能力.最后,建立了基于遗传算法(Genetic Algorithm,GA)的GA-DBN模型,有效解决DBN结构参数调试繁琐的问题,确保DBN高精度地从底层量测数据提取低维特征,提高安全分类精度.新英格兰10机39节点系统的仿真实验表明,在样本不...
        Saved in:
      
    
          | Published in | 电力系统保护与控制 Vol. 50; no. 5; pp. 171 - 177 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            上海理工大学电气工程系,上海 200093%四川水利职业技术学院,四川成都 611231
    
        01.03.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1674-3415 | 
| DOI | 10.19783/j.cnki.pspc.210654 | 
Cover
| Summary: | 深度学习是感知智能电网暂态安全状态的有效方法,针对多层重构学习过程低维特征及结构参数难以全局寻优的问题,提出了一种改进深度置信网络(Deep Belief Network,DBN)方法.首先,该方法利用SMOTE过采样算法,增加样本多样性,促使DBN深层架构的挖掘.其次,直接面向噪声样本,DBN通过网络中各神经元吉布斯抽样的二值状态,增强重构特征的抗噪能力.最后,建立了基于遗传算法(Genetic Algorithm,GA)的GA-DBN模型,有效解决DBN结构参数调试繁琐的问题,确保DBN高精度地从底层量测数据提取低维特征,提高安全分类精度.新英格兰10机39节点系统的仿真实验表明,在样本不平衡、含噪声情况下,所提算法比其他算法的失稳漏判率降低,辩识准确率和F1分数提升. | 
|---|---|
| ISSN: | 1674-3415 | 
| DOI: | 10.19783/j.cnki.pspc.210654 |