On Balanced Separators in Road Networks

The following algorithm partitions road networks surprisingly well: (i) sort the vertices by longitude (or latitude, or some linear combination) and (ii) compute the maximum flow from the first$$k$$nodes (forming the source) to the last$$k$$nodes (forming the sink). Return the corresponding minimum...

Full description

Saved in:
Bibliographic Details
Published inExperimental Algorithms pp. 286 - 297
Main Authors Schild, Aaron, Sommer, Christian
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2015
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3319200852
9783319200859
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-20086-6_22

Cover

More Information
Summary:The following algorithm partitions road networks surprisingly well: (i) sort the vertices by longitude (or latitude, or some linear combination) and (ii) compute the maximum flow from the first$$k$$nodes (forming the source) to the last$$k$$nodes (forming the sink). Return the corresponding minimum cut as an edge separator (or recurse until the resulting subgraphs are sufficiently small).
Bibliography:Original Abstract: The following algorithm partitions road networks surprisingly well: (i) sort the vertices by longitude (or latitude, or some linear combination) and (ii) compute the maximum flow from the first \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$k$$ \end{document} nodes (forming the source) to the last \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$k$$ \end{document} nodes (forming the sink). Return the corresponding minimum cut as an edge separator (or recurse until the resulting subgraphs are sufficiently small).
ISBN:3319200852
9783319200859
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-20086-6_22