Formalizing Complex Prior Information to Quantify Subjective Interestingness of Frequent Pattern Sets
In this paper, we are concerned with the problem of modelling prior information of a data miner about the data, with the purpose of quantifying subjective interestingness of patterns. Recent results have achieved this for the specific case of prior expectations on the row and column marginals, based...
        Saved in:
      
    
          | Published in | Advances in Intelligent Data Analysis XI pp. 161 - 171 | 
|---|---|
| Main Authors | , | 
| Format | Book Chapter | 
| Language | English | 
| Published | 
        Berlin, Heidelberg
          Springer Berlin Heidelberg
    
        2012
     | 
| Series | Lecture Notes in Computer Science | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9783642341557 3642341551  | 
| ISSN | 0302-9743 1611-3349  | 
| DOI | 10.1007/978-3-642-34156-4_16 | 
Cover
| Abstract | In this paper, we are concerned with the problem of modelling prior information of a data miner about the data, with the purpose of quantifying subjective interestingness of patterns. Recent results have achieved this for the specific case of prior expectations on the row and column marginals, based on the Maximum Entropy principle [2,9]. In the current paper, we extend these ideas to make them applicable to more general prior information, such as knowledge of frequencies of itemsets, a cluster structure in the data, or the presence of dense areas in the database. As in [2,9], we show how information theory can be used to quantify subjective interestingness against this model, in particular the subjective interestingness of tile patterns [3]. Our method presents an efficient, flexible, and rigorous alternative to the randomization approach presented in [5]. We demonstrate our method by searching for interesting patterns in real-life data with respect to various realistic types of prior information. | 
    
|---|---|
| AbstractList | In this paper, we are concerned with the problem of modelling prior information of a data miner about the data, with the purpose of quantifying subjective interestingness of patterns. Recent results have achieved this for the specific case of prior expectations on the row and column marginals, based on the Maximum Entropy principle [2,9]. In the current paper, we extend these ideas to make them applicable to more general prior information, such as knowledge of frequencies of itemsets, a cluster structure in the data, or the presence of dense areas in the database. As in [2,9], we show how information theory can be used to quantify subjective interestingness against this model, in particular the subjective interestingness of tile patterns [3]. Our method presents an efficient, flexible, and rigorous alternative to the randomization approach presented in [5]. We demonstrate our method by searching for interesting patterns in real-life data with respect to various realistic types of prior information. | 
    
| Author | DeBie, Tijl Kontonasios, Kleanthis-Nikolaos  | 
    
| Author_xml | – sequence: 1 givenname: Kleanthis-Nikolaos surname: Kontonasios fullname: Kontonasios, Kleanthis-Nikolaos organization: Intelligent Systems Laboratory, University of Bristol, Bristol, UK – sequence: 2 givenname: Tijl surname: DeBie fullname: DeBie, Tijl organization: Intelligent Systems Laboratory, University of Bristol, Bristol, UK  | 
    
| BookMark | eNpVkN1OAjEQhatiIiJv4EVfoNpu_3YvDRElMRED982WnZpFaLEtRn16C3rj3ExyzszJyXeJBj54QOia0RtGqb5tdE04UaIiXDCpiDBMnaBxkXkRj5o4RUOmGCOci-bsnyf1AA0ppxVptOAXaJzSmpbRdd0IMUQwDXHbbvrv3r_iSdjuNvCJ57EPEc-8O3i5Dx7ngF_2rc-9-8KLvV3DKvcfUE4yREi5PHtICQeHpxHe9-Aznre5mB4vIKcrdO7aTYLx3x6h5fR-OXkkT88Ps8ndE0mMcUUc6zRAad8wKwVf6ZWzlAuhVKU6WSutVSe0krKtJVgHLQdrbQ1Ksq7mjo9Q9RubdrFUgmhsCG_JMGoOKE1JNtwUMuaIzRxQ8h8NRWWP | 
    
| ContentType | Book Chapter | 
    
| Copyright | Springer-Verlag Berlin Heidelberg 2012 | 
    
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2012 | 
    
| DOI | 10.1007/978-3-642-34156-4_16 | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics Computer Science  | 
    
| EISBN | 9783642341564 364234156X  | 
    
| EISSN | 1611-3349 | 
    
| Editor | Hollmén, Jaakko Klawonn, Frank Tucker, Allan  | 
    
| Editor_xml | – sequence: 1 givenname: Jaakko surname: Hollmén fullname: Hollmén, Jaakko email: jaakko.hollmen@aalto.fi – sequence: 2 givenname: Frank surname: Klawonn fullname: Klawonn, Frank email: f.klawonn@ostfalia.de – sequence: 3 givenname: Allan surname: Tucker fullname: Tucker, Allan email: allan.tucker@brunel.ac.uk  | 
    
| EndPage | 171 | 
    
| GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02  | 
    
| ID | FETCH-LOGICAL-s1136-f1d7ee97891b543c7cfb03446626d586776d47655a85ebfea3ebbb8e651d83f3 | 
    
| ISBN | 9783642341557 3642341551  | 
    
| ISSN | 0302-9743 | 
    
| IngestDate | Wed Sep 17 03:52:20 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s1136-f1d7ee97891b543c7cfb03446626d586776d47655a85ebfea3ebbb8e651d83f3 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | springer_books_10_1007_978_3_642_34156_4_16 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012 | 
    
| PublicationDateYYYYMMDD | 2012-01-01 | 
    
| PublicationDate_xml | – year: 2012 text: 2012  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin, Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin, Heidelberg | 
    
| PublicationSeriesTitle | Lecture Notes in Computer Science | 
    
| PublicationSubtitle | 11th International Symposium, IDA 2012, Helsinki, Finland, October 25-27, 2012. Proceedings | 
    
| PublicationTitle | Advances in Intelligent Data Analysis XI | 
    
| PublicationYear | 2012 | 
    
| Publisher | Springer Berlin Heidelberg | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg | 
    
| RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Nierstrasz, Oscar Steffen, Bernhard Kittler, Josef Vardi, Moshe Y. Weikum, Gerhard Sudan, Madhu Naor, Moni Mitchell, John C. Terzopoulos, Demetri Pandu Rangan, C. Kanade, Takeo Hutchison, David Tygar, Doug  | 
    
| RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Zurich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: Oscar surname: Nierstrasz fullname: Nierstrasz, Oscar organization: University of Bern, Bern, Switzerland – sequence: 9 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology, Madras, India – sequence: 10 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: University of Dortmund, Dortmund, Germany – sequence: 11 givenname: Madhu surname: Sudan fullname: Sudan, Madhu organization: Massachusetts Institute of Technology, USA – sequence: 12 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 13 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 14 givenname: Moshe Y. surname: Vardi fullname: Vardi, Moshe Y. organization: Rice University, Houston, USA – sequence: 15 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany  | 
    
| SSID | ssj0000788944 ssj0002792  | 
    
| Score | 1.426834 | 
    
| Snippet | In this paper, we are concerned with the problem of modelling prior information of a data miner about the data, with the purpose of quantifying subjective... | 
    
| SourceID | springer | 
    
| SourceType | Publisher | 
    
| StartPage | 161 | 
    
| SubjectTerms | Itemset Frequency Markov Network MaxEnt Model Maximum Entropy Principle Prior Knowledge  | 
    
| Title | Formalizing Complex Prior Information to Quantify Subjective Interestingness of Frequent Pattern Sets | 
    
| URI | http://link.springer.com/10.1007/978-3-642-34156-4_16 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa65QIcgAXEWz5wq4I2deKmBw6Atlr2UYFUUG-RndhLliqRmlRC-yv4ycz4kZjdFdJyiaooiuOZr-PxeOYbQt4qwYXQoIEETWAyLeNIHGRFJPVUyFLPDywD39mSH31LjtfpejT6HWQt7Tr5rri8sa7kf7QK90CvWCV7C832L4Ub8Bv0C1fQMFyvOL9_h1lterE9vTf5rJ97Ys0O9NiJgWtk3UdFT5CpoBZtZRPrTjYKhPqjaqNl9RP2t83QYV59tIcWq-piE0Jqgf7tprr0qQIb9WvyZVs124krajJYAmf2605gDpIxSxfWotrQI1J61OfGuoKTutiaPO4O-wRgXBIMl-WVMtJT7ftTd8CxbDo7T9-DwpukMGZhkj_CmIWPWU7-QellykvA10OHZxYYRQYWHPZA1igqa7Q5UjEyS33qDHFsKd7dmh7bNi_XloswQwQGi3A0HiV5zPfIHnzAmNz5cHh8-r2P2oFDlZlKYrfWI_2iPaeyX4XVQ_6rY8vvNMwiqNy8achrZ_HGxVk9JPex7IViPQoI-BEZqXqfPPACp07g--TeWU_02z4mKsAEdZigBhM0wATtGuoxQQdM0CuYoI2mHhPUYYIiJp6Q1eJw9ekocp07ohZ7BEU6LmdKwSTnsUwTVswKLZFbksP2uUyRQpGXyYynqchSJbUSTEkpM8XTuMyYZk_JuG5q9YxQzcQUm5fwgs2TErszwIPzUslkqiS8_TmZeKHl-Fdsc8_DDaPnLAcR50bEOYr4xa2efknuDuB9RcbddqdegwvayTcOF38Ac9qCuA | 
    
| linkProvider | Library Specific Holdings | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Intelligent+Data+Analysis+XI&rft.au=Kontonasios%2C+Kleanthis-Nikolaos&rft.au=DeBie%2C+Tijl&rft.atitle=Formalizing+Complex+Prior+Information+to+Quantify+Subjective+Interestingness+of+Frequent+Pattern+Sets&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2012-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642341557&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=161&rft.epage=171&rft_id=info:doi/10.1007%2F978-3-642-34156-4_16 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |