Formalizing Complex Prior Information to Quantify Subjective Interestingness of Frequent Pattern Sets

In this paper, we are concerned with the problem of modelling prior information of a data miner about the data, with the purpose of quantifying subjective interestingness of patterns. Recent results have achieved this for the specific case of prior expectations on the row and column marginals, based...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Intelligent Data Analysis XI pp. 161 - 171
Main Authors Kontonasios, Kleanthis-Nikolaos, DeBie, Tijl
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2012
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783642341557
3642341551
ISSN0302-9743
1611-3349
DOI10.1007/978-3-642-34156-4_16

Cover

Abstract In this paper, we are concerned with the problem of modelling prior information of a data miner about the data, with the purpose of quantifying subjective interestingness of patterns. Recent results have achieved this for the specific case of prior expectations on the row and column marginals, based on the Maximum Entropy principle [2,9]. In the current paper, we extend these ideas to make them applicable to more general prior information, such as knowledge of frequencies of itemsets, a cluster structure in the data, or the presence of dense areas in the database. As in [2,9], we show how information theory can be used to quantify subjective interestingness against this model, in particular the subjective interestingness of tile patterns [3]. Our method presents an efficient, flexible, and rigorous alternative to the randomization approach presented in [5]. We demonstrate our method by searching for interesting patterns in real-life data with respect to various realistic types of prior information.
AbstractList In this paper, we are concerned with the problem of modelling prior information of a data miner about the data, with the purpose of quantifying subjective interestingness of patterns. Recent results have achieved this for the specific case of prior expectations on the row and column marginals, based on the Maximum Entropy principle [2,9]. In the current paper, we extend these ideas to make them applicable to more general prior information, such as knowledge of frequencies of itemsets, a cluster structure in the data, or the presence of dense areas in the database. As in [2,9], we show how information theory can be used to quantify subjective interestingness against this model, in particular the subjective interestingness of tile patterns [3]. Our method presents an efficient, flexible, and rigorous alternative to the randomization approach presented in [5]. We demonstrate our method by searching for interesting patterns in real-life data with respect to various realistic types of prior information.
Author DeBie, Tijl
Kontonasios, Kleanthis-Nikolaos
Author_xml – sequence: 1
  givenname: Kleanthis-Nikolaos
  surname: Kontonasios
  fullname: Kontonasios, Kleanthis-Nikolaos
  organization: Intelligent Systems Laboratory, University of Bristol, Bristol, UK
– sequence: 2
  givenname: Tijl
  surname: DeBie
  fullname: DeBie, Tijl
  organization: Intelligent Systems Laboratory, University of Bristol, Bristol, UK
BookMark eNpVkN1OAjEQhatiIiJv4EVfoNpu_3YvDRElMRED982WnZpFaLEtRn16C3rj3ExyzszJyXeJBj54QOia0RtGqb5tdE04UaIiXDCpiDBMnaBxkXkRj5o4RUOmGCOci-bsnyf1AA0ppxVptOAXaJzSmpbRdd0IMUQwDXHbbvrv3r_iSdjuNvCJ57EPEc-8O3i5Dx7ngF_2rc-9-8KLvV3DKvcfUE4yREi5PHtICQeHpxHe9-Aznre5mB4vIKcrdO7aTYLx3x6h5fR-OXkkT88Ps8ndE0mMcUUc6zRAad8wKwVf6ZWzlAuhVKU6WSutVSe0krKtJVgHLQdrbQ1Ksq7mjo9Q9RubdrFUgmhsCG_JMGoOKE1JNtwUMuaIzRxQ8h8NRWWP
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2012
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2012
DOI 10.1007/978-3-642-34156-4_16
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 9783642341564
364234156X
EISSN 1611-3349
Editor Hollmén, Jaakko
Klawonn, Frank
Tucker, Allan
Editor_xml – sequence: 1
  givenname: Jaakko
  surname: Hollmén
  fullname: Hollmén, Jaakko
  email: jaakko.hollmen@aalto.fi
– sequence: 2
  givenname: Frank
  surname: Klawonn
  fullname: Klawonn, Frank
  email: f.klawonn@ostfalia.de
– sequence: 3
  givenname: Allan
  surname: Tucker
  fullname: Tucker, Allan
  email: allan.tucker@brunel.ac.uk
EndPage 171
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-s1136-f1d7ee97891b543c7cfb03446626d586776d47655a85ebfea3ebbb8e651d83f3
ISBN 9783642341557
3642341551
ISSN 0302-9743
IngestDate Wed Sep 17 03:52:20 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1136-f1d7ee97891b543c7cfb03446626d586776d47655a85ebfea3ebbb8e651d83f3
PageCount 11
ParticipantIDs springer_books_10_1007_978_3_642_34156_4_16
PublicationCentury 2000
PublicationDate 2012
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle 11th International Symposium, IDA 2012, Helsinki, Finland, October 25-27, 2012. Proceedings
PublicationTitle Advances in Intelligent Data Analysis XI
PublicationYear 2012
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 13
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbrücken, Germany
SSID ssj0000788944
ssj0002792
Score 1.426834
Snippet In this paper, we are concerned with the problem of modelling prior information of a data miner about the data, with the purpose of quantifying subjective...
SourceID springer
SourceType Publisher
StartPage 161
SubjectTerms Itemset Frequency
Markov Network
MaxEnt Model
Maximum Entropy Principle
Prior Knowledge
Title Formalizing Complex Prior Information to Quantify Subjective Interestingness of Frequent Pattern Sets
URI http://link.springer.com/10.1007/978-3-642-34156-4_16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa65QIcgAXEWz5wq4I2deKmBw6Atlr2UYFUUG-RndhLliqRmlRC-yv4ycz4kZjdFdJyiaooiuOZr-PxeOYbQt4qwYXQoIEETWAyLeNIHGRFJPVUyFLPDywD39mSH31LjtfpejT6HWQt7Tr5rri8sa7kf7QK90CvWCV7C832L4Ub8Bv0C1fQMFyvOL9_h1lterE9vTf5rJ97Ys0O9NiJgWtk3UdFT5CpoBZtZRPrTjYKhPqjaqNl9RP2t83QYV59tIcWq-piE0Jqgf7tprr0qQIb9WvyZVs124krajJYAmf2605gDpIxSxfWotrQI1J61OfGuoKTutiaPO4O-wRgXBIMl-WVMtJT7ftTd8CxbDo7T9-DwpukMGZhkj_CmIWPWU7-QellykvA10OHZxYYRQYWHPZA1igqa7Q5UjEyS33qDHFsKd7dmh7bNi_XloswQwQGi3A0HiV5zPfIHnzAmNz5cHh8-r2P2oFDlZlKYrfWI_2iPaeyX4XVQ_6rY8vvNMwiqNy8achrZ_HGxVk9JPex7IViPQoI-BEZqXqfPPACp07g--TeWU_02z4mKsAEdZigBhM0wATtGuoxQQdM0CuYoI2mHhPUYYIiJp6Q1eJw9ekocp07ohZ7BEU6LmdKwSTnsUwTVswKLZFbksP2uUyRQpGXyYynqchSJbUSTEkpM8XTuMyYZk_JuG5q9YxQzcQUm5fwgs2TErszwIPzUslkqiS8_TmZeKHl-Fdsc8_DDaPnLAcR50bEOYr4xa2efknuDuB9RcbddqdegwvayTcOF38Ac9qCuA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Intelligent+Data+Analysis+XI&rft.au=Kontonasios%2C+Kleanthis-Nikolaos&rft.au=DeBie%2C+Tijl&rft.atitle=Formalizing+Complex+Prior+Information+to+Quantify+Subjective+Interestingness+of+Frequent+Pattern+Sets&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2012-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783642341557&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=161&rft.epage=171&rft_id=info:doi/10.1007%2F978-3-642-34156-4_16
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon