Formalizing Complex Prior Information to Quantify Subjective Interestingness of Frequent Pattern Sets
In this paper, we are concerned with the problem of modelling prior information of a data miner about the data, with the purpose of quantifying subjective interestingness of patterns. Recent results have achieved this for the specific case of prior expectations on the row and column marginals, based...
Saved in:
| Published in | Advances in Intelligent Data Analysis XI pp. 161 - 171 |
|---|---|
| Main Authors | , |
| Format | Book Chapter |
| Language | English |
| Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2012
|
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783642341557 3642341551 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-642-34156-4_16 |
Cover
| Summary: | In this paper, we are concerned with the problem of modelling prior information of a data miner about the data, with the purpose of quantifying subjective interestingness of patterns. Recent results have achieved this for the specific case of prior expectations on the row and column marginals, based on the Maximum Entropy principle [2,9]. In the current paper, we extend these ideas to make them applicable to more general prior information, such as knowledge of frequencies of itemsets, a cluster structure in the data, or the presence of dense areas in the database. As in [2,9], we show how information theory can be used to quantify subjective interestingness against this model, in particular the subjective interestingness of tile patterns [3]. Our method presents an efficient, flexible, and rigorous alternative to the randomization approach presented in [5]. We demonstrate our method by searching for interesting patterns in real-life data with respect to various realistic types of prior information. |
|---|---|
| ISBN: | 9783642341557 3642341551 |
| ISSN: | 0302-9743 1611-3349 |
| DOI: | 10.1007/978-3-642-34156-4_16 |