A Light-Weight Approach for Online State Classification of Self-organizing Parallel Systems

The growing complexity of future heterogeneous and parallel computing systems is addressed by Organic Computing principles, employing so-called Self-X features for autonomous adaptation and optimization. Here, one major problem is the fact that individual system components only have knowledge about...

Full description

Saved in:
Bibliographic Details
Published inArchitecture of Computing Systems - ARCS 2011 pp. 183 - 194
Main Authors Kramer, David, Buchty, Rainer, Karl, Wolfgang
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2011
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3642191363
9783642191367
ISSN0302-9743
1611-3349
DOI10.1007/978-3-642-19137-4_16

Cover

More Information
Summary:The growing complexity of future heterogeneous and parallel computing systems is addressed by Organic Computing principles, employing so-called Self-X features for autonomous adaptation and optimization. Here, one major problem is the fact that individual system components only have knowledge about their own states and is therefore lacking the global picture; as a result, each component is unable to determine whether given constraints or requirements are met, whether an optimization cycle should be triggered or not. Even worse, a local instance cannot evaluate the outcome of such optimization cycles and therefore is unable to rate whether the measures taken resulted in a global improvement or not. In order to solve this problem, we present a novel rule-based approach for online system-state evaluation and classification. The rules used for system evaluation are derived during runtime from the information provided by a dedicated, distributed monitoring infrastructure. An important feature of this approach is its capability to self-adapt, i.e., the monitoring infrastructure can adapt the rules to react to given requirements and/or changed system behavior. The proposed method is light-weight to be efficiently employed in self-organizing parallel manycore systems.
ISBN:3642191363
9783642191367
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-642-19137-4_16