基于改进自适应遗传算法的新安江模型参数率定研究

P333.9; 模型参数率定是提高水文模型模拟效果的重要手段,通过研究一种改进的自适应遗传算法(IAGA)对新安江模型参数进行优化率定,解决传统遗传算法初始种群质量不高、容易早熟收敛、局部搜索能力差等问题.该算法利用混沌变量遍历性特点,随机生成初始种群并选优,提高初始种群的个体质量;针对交叉与变异的进化过程,设计了反映种群离散程度的种群目标函数离散系数,利用该系数构建了自适应调整交叉与变异概率算子,防止遗传算法过早收敛;依托环形交叉算子,提高算法全局搜索能力;采用自适应非均匀变异算子,实时优化算法的局部搜索能力,避免陷入局部最优.将自适应遗传算法、传统遗传算法(GA)和自适应遗传算法(AGA)...

Full description

Saved in:
Bibliographic Details
Published in中国农村水利水电 no. 11; pp. 10 - 26
Main Authors 左翔, 赵杏杏, 叶瑞禄, 丛小飞, 刘修恒
Format Journal Article
LanguageChinese
Published 南京河海智慧水利研究院,江苏 南京 210012 15.11.2023
南京中禹智慧水利研究院有限公司,江苏 南京 210012%南京中禹智慧水利研究院有限公司,江苏 南京 210012
河海大学计算机与信息学院,江苏 南京 211100
Subjects
Online AccessGet full text
ISSN1007-2284
DOI10.12396/znsd.230826

Cover

More Information
Summary:P333.9; 模型参数率定是提高水文模型模拟效果的重要手段,通过研究一种改进的自适应遗传算法(IAGA)对新安江模型参数进行优化率定,解决传统遗传算法初始种群质量不高、容易早熟收敛、局部搜索能力差等问题.该算法利用混沌变量遍历性特点,随机生成初始种群并选优,提高初始种群的个体质量;针对交叉与变异的进化过程,设计了反映种群离散程度的种群目标函数离散系数,利用该系数构建了自适应调整交叉与变异概率算子,防止遗传算法过早收敛;依托环形交叉算子,提高算法全局搜索能力;采用自适应非均匀变异算子,实时优化算法的局部搜索能力,避免陷入局部最优.将自适应遗传算法、传统遗传算法(GA)和自适应遗传算法(AGA)应用于秦淮河流域新安江模型的参数率定,并从率定的收敛性、耗时、稳定性和效果方面进行算法的性能比较,结果表明:IAGA算法具有更优的寻优能力,更好的收敛结果,更高的稳定性和精度,场次洪水的模拟效果优于GA算法和AGA算法,率定期与验证期确定性系数(R2)均在0.85以上,纳什效率系数(NSE)均在0.8以上,总体达到了水文预报的乙级标准.结果表明采用上述的综合手段改进传统遗传算法是可行的,改进后的IAGA算法具有良好的应用前景,为新安江模型的自动率定提供了一种有效的途径.
ISSN:1007-2284
DOI:10.12396/znsd.230826