在高斯分布下优化仿射变换的极限学习机

TP183; 极限学习机(ELM)会大量映射到激活函数的饱和区域,同时隐含层输入与输出远远不能获得共同的分布方式,导致泛化性能大打折扣.针对这一问题,研究了在高斯分布下优化激活函数中仿射变换(AT)的极限学习机,主要思想是在隐含层输入数据上引入新型的线性关系,利用梯度下降算法对误差函数中的缩放参数和平移参数进行优化,以满足隐含层输出能够高度服从高斯分布.基于高斯分布计算仿射参数的方法,能够保证隐节点相互独立的同时,也强调了高度的依赖关系.实验结果表明,在实际分类数据集和图像回归数据集中,隐含层输出数据不能很好地服从均匀分布,但服从高斯分布趋势,总体上能够达到更好的实验效果.与原始ELM算法和A...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 Vol. 15; no. 4; pp. 690 - 701
Main Authors 张毅, 王士同
Format Journal Article
LanguageChinese
Published 江南大学 人工智能与计算机学院,江苏 无锡 214122%江南大学 江苏省媒体设计与软件技术重点实验室,江苏 无锡 214122 01.04.2021
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.1912074

Cover

More Information
Summary:TP183; 极限学习机(ELM)会大量映射到激活函数的饱和区域,同时隐含层输入与输出远远不能获得共同的分布方式,导致泛化性能大打折扣.针对这一问题,研究了在高斯分布下优化激活函数中仿射变换(AT)的极限学习机,主要思想是在隐含层输入数据上引入新型的线性关系,利用梯度下降算法对误差函数中的缩放参数和平移参数进行优化,以满足隐含层输出能够高度服从高斯分布.基于高斯分布计算仿射参数的方法,能够保证隐节点相互独立的同时,也强调了高度的依赖关系.实验结果表明,在实际分类数据集和图像回归数据集中,隐含层输出数据不能很好地服从均匀分布,但服从高斯分布趋势,总体上能够达到更好的实验效果.与原始ELM算法和AT-ELM1算法比较,均有显著的改善.
ISSN:1673-9418
DOI:10.3778/j.issn.1673-9418.1912074