融合残差网络的自监督社交推荐算法

TP391; 基于图神经网络的社交推荐算法,通过社交图和交互图的信息来学习用户和项目的嵌入,得到最终的推荐结果.但是现有算法主要利用静态的社交图结构,无法挖掘用户之间潜在的链接关系,同时也没有解决用户与项目交互行为中的噪声问题.提出了一种融合残差网络的自监督社交推荐算法.采用变分超图自编码器对社交网络进行链接预测,得到重构的社交图,以此来挖掘隐藏在用户间的积极链接关系;利用注意力机制为原始社交图和重构后的残差社交图分配不同的注意力系数,得到更加精确的用户表征;为了缓解数据中的噪声问题,构建了自适应的超图全局关系提取器,在该提取器的协作下利用局部嵌入信息和全局嵌入信息创建自监督信号,从而优化局部...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 Vol. 18; no. 12; pp. 3175 - 3188
Main Authors 王玉洁, 杨哲
Format Journal Article
LanguageChinese
Published 苏州大学 计算机科学与技术学院,江苏 苏州 215006 01.12.2024
江苏省计算机信息处理技术重点实验室,江苏 苏州 215006
江苏省大数据智能工程实验室,江苏 苏州 215006
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.2401006

Cover

Abstract TP391; 基于图神经网络的社交推荐算法,通过社交图和交互图的信息来学习用户和项目的嵌入,得到最终的推荐结果.但是现有算法主要利用静态的社交图结构,无法挖掘用户之间潜在的链接关系,同时也没有解决用户与项目交互行为中的噪声问题.提出了一种融合残差网络的自监督社交推荐算法.采用变分超图自编码器对社交网络进行链接预测,得到重构的社交图,以此来挖掘隐藏在用户间的积极链接关系;利用注意力机制为原始社交图和重构后的残差社交图分配不同的注意力系数,得到更加精确的用户表征;为了缓解数据中的噪声问题,构建了自适应的超图全局关系提取器,在该提取器的协作下利用局部嵌入信息和全局嵌入信息创建自监督信号,从而优化局部的嵌入表示,进而缓解噪声影响.该算法在Ciao、Epinions和Yelp三个数据集上与NGCF、LightGCN、MHCN等基线模型进行对比实验.在Ciao数据集上,Recall@10提升了17.1%~48.5%,NDCG@10提升了1.4%~37.9%;在Epinions数据集上,Recall@10提升了8.3%~56.2%,NDCG@10提升了3.7%~29.8%;在Yelp数据集上,Recall@10提升了9.1%~53.3%,NDCG@10提升了11.2%~66.6%.实验结果表明,该算法相较于基准模型有良好的推荐性能.
AbstractList TP391; 基于图神经网络的社交推荐算法,通过社交图和交互图的信息来学习用户和项目的嵌入,得到最终的推荐结果.但是现有算法主要利用静态的社交图结构,无法挖掘用户之间潜在的链接关系,同时也没有解决用户与项目交互行为中的噪声问题.提出了一种融合残差网络的自监督社交推荐算法.采用变分超图自编码器对社交网络进行链接预测,得到重构的社交图,以此来挖掘隐藏在用户间的积极链接关系;利用注意力机制为原始社交图和重构后的残差社交图分配不同的注意力系数,得到更加精确的用户表征;为了缓解数据中的噪声问题,构建了自适应的超图全局关系提取器,在该提取器的协作下利用局部嵌入信息和全局嵌入信息创建自监督信号,从而优化局部的嵌入表示,进而缓解噪声影响.该算法在Ciao、Epinions和Yelp三个数据集上与NGCF、LightGCN、MHCN等基线模型进行对比实验.在Ciao数据集上,Recall@10提升了17.1%~48.5%,NDCG@10提升了1.4%~37.9%;在Epinions数据集上,Recall@10提升了8.3%~56.2%,NDCG@10提升了3.7%~29.8%;在Yelp数据集上,Recall@10提升了9.1%~53.3%,NDCG@10提升了11.2%~66.6%.实验结果表明,该算法相较于基准模型有良好的推荐性能.
Abstract_FL Social recommendation based on graph neural networks learns the embedded relationships between users and items through the information of social graphs and interaction graphs to get the final recommendation results.However,the existing algorithms mainly utilize the static social graph structure,which is unable to mine the poten-tial linking relationship between users,and at the same time do not solve the noise problem in the user-item interac-tion behavior.Therefore,a self-supervised social recommendation algorithm incorporating residual networks is pro-posed.Firstly,the algorithm employs a variational hypergraph auto-encoder for link prediction in social networks to obtain a reconstructed social graph,which is used to mine the positive link relationships hidden among users.Sec-ondly,an attention mechanism is utilized to assign different attention coefficients to the original and the reconstructed residual social graphs to obtain a more accurate representation of users.Lastly,to alleviate the problem of noise in the data,an adaptive hypergraph global relation extractor is constructed.Self-supervised signals are created using local embedding information and global embedding information in collaboration with this extractor,which optimizes the local embedding representation and thus mitigates the effect of noise.The algorithm is experimentally compared with baseline models such as NGCF,LightGCN,and MHCN on three datasets,Ciao,Epinions and Yelp.On the Ciao dataset,Recall@10 is improved by 17.1%to 48.5%,NDCG@10 is improved by 1.4%to 37.9%;on the Epinions dataset,Recall@10 is improved by 8.3%to 56.2%,NDCG@10 is improved by 3.7%to 29.8%;on the Yelp dataset,Recall@10 is improved by 9.1%to 53.3%,NDCG@10 is improved by 11.2%to 66.6%.Experimental results show that the algorithm has good recommendation performance compared with the benchmark model.
Author 杨哲
王玉洁
AuthorAffiliation 苏州大学 计算机科学与技术学院,江苏 苏州 215006;江苏省计算机信息处理技术重点实验室,江苏 苏州 215006;江苏省大数据智能工程实验室,江苏 苏州 215006
AuthorAffiliation_xml – name: 苏州大学 计算机科学与技术学院,江苏 苏州 215006;江苏省计算机信息处理技术重点实验室,江苏 苏州 215006;江苏省大数据智能工程实验室,江苏 苏州 215006
Author_FL YANG Zhe
WANG Yujie
Author_FL_xml – sequence: 1
  fullname: WANG Yujie
– sequence: 2
  fullname: YANG Zhe
Author_xml – sequence: 1
  fullname: 王玉洁
– sequence: 2
  fullname: 杨哲
BookMark eNo9jT1LAzEYgDNUsNb-B1eHO98kb5N0lOIXFFx0LpfLRXpKCkZRd0FBKu0ggl-LHcThFgdB0V9jL_czFBSnB57heeZIzQ1cRsgChZhLqZbyuO-9i6mQPGojVTFDoACiRur_bpY0ve9raCEyKoWqE6gehtPReVlcTF-L8DEO73fh5rQ6ew6343D_GCafX2-T8vKpGo5CcV2-XM2TGZvs-az5xwbZXl3Z6qxH3c21jc5yN_IUUEZcGgpGGaEsh7SVsJRyiQhKtlOTpEyjAaOF0ha5zRJqBdMShdFZhpyB4g2y-Ns9SpxN3E4vHxzuu59jL_f57vHJgWfAkDIAyb8Bdd9bfg
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1673-9418.2401006
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Self-Supervised Social Recommendation Algorithm Fusing Residual Networks
EndPage 3188
ExternalDocumentID jsjkxyts202412007
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
M~E
PSX
TCJ
ID FETCH-LOGICAL-s1047-37d10d8d68f30c5a2c137440879cdac2b4d0db68bf43fea1f62b746dbee432083
ISSN 1673-9418
IngestDate Thu May 29 04:00:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords social network
自监督学习
hypergraph
graph convolutional neural network
社交网络
推荐系统
超图
self-supervised learning
图卷积神经网络
recommendation system
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1047-37d10d8d68f30c5a2c137440879cdac2b4d0db68bf43fea1f62b746dbee432083
PageCount 14
ParticipantIDs wanfang_journals_jsjkxyts202412007
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle 计算机科学与探索
PublicationTitle_FL Journal of Frontiers of Computer Science & Technology
PublicationYear 2024
Publisher 苏州大学 计算机科学与技术学院,江苏 苏州 215006
江苏省计算机信息处理技术重点实验室,江苏 苏州 215006
江苏省大数据智能工程实验室,江苏 苏州 215006
Publisher_xml – name: 江苏省大数据智能工程实验室,江苏 苏州 215006
– name: 苏州大学 计算机科学与技术学院,江苏 苏州 215006
– name: 江苏省计算机信息处理技术重点实验室,江苏 苏州 215006
SSID ssib054421768
ssib002040941
ssib002423894
ssib051375751
ssib023646573
ssib036438069
ssib002040926
Score 2.4066901
Snippet TP391; 基于图神经网络的社交推荐算法,通过社交图和交互图的信息来学习用户和项目的嵌入,得到最终的推荐结果.但是现有算法主要利用静态的社交图结构,无法挖掘用户之间潜在...
SourceID wanfang
SourceType Aggregation Database
StartPage 3175
Title 融合残差网络的自监督社交推荐算法
URI https://d.wanfangdata.com.cn/periodical/jsjkxyts202412007
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1673-9418
  databaseCode: ADMLS
  dateStart: 20200501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib002423894
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  issn: 1673-9418
  databaseCode: M~E
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib054421768
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxQxFB9qvXgRRcVviphT2XVmks3HMbM7SxHqqYWeLJP5UCqs4G5Be_AkKEilPYjg18UexMNePAiK_jV2Z_8M38vMzs7aClUv4SXzkvdeXib5ZSYfjnM9hTaRRDDJEXFKG8zLaENFsWkkXoK_ddyMC9zvvHyLL62ym2uttbljt2urljYHphlvHbqv5F-8CmngV9wl-xeerQqFBKDBvxCChyE8ko9JKIkKieyQsEWUS6QkIScaUgJMCQTSoSBBhyjPEgFRbSSUJpJhdgk82qYEJY_qEE2R0IwEkB1CjTSULEOipc3VQXGhLV8JfBRQUlxjOUG6yAZPtTfDBtIDK04LK65FNIjjVorE8kspvtWWATFpEZggC8sKQlmxCIWnLNxqL211UBL49W8aPvttfYg1JCCyW9YV1CTqw1C3iWKL_2GGxlUkBbPu1ngUUQot9NvWAo-obqXK4kGlFgEuuS6vjR5cQFNn5YByYHjZrJaMF4MFQrca8IDeVR42qFEhpB3UUEazktEELOZNxM8eGb7R37j38NGgj1XrFYctHPcF53jDx_LjcArPoAdX9eklxtnMPmfAs1V_jXcN8NYU7kKUSpdXcLjlUYG_8ao4YzDhLXajTrQuFtOhSTf-ZJDdPtfLot6dGtJbOeWcLKdoC7p43047c1t3zzju-P32_s6z0fD5_pdh_n03__Y2f_1k_PRT_mY3f_ch3_vx8-ve6MXH8fZOPnw1-vzyrLPaDVfaS43ytpFG3x5XQkXiuYlMuMyoG7ciPwZz8D52oeIkin3DEjcxXJqM0SyNvIz7RjCemDRl1IeZzDlnvne_l553FoSgJopTBWjAMKFcaWKaGcn9LGUmM_SCc620cL3sTfrrB3x28ShMl5wT0_fnsjM_eLCZXgGUPDBXrat_AR2OiIM
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88%E6%AE%8B%E5%B7%AE%E7%BD%91%E7%BB%9C%E7%9A%84%E8%87%AA%E7%9B%91%E7%9D%A3%E7%A4%BE%E4%BA%A4%E6%8E%A8%E8%8D%90%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E7%8E%8B%E7%8E%89%E6%B4%81&rft.au=%E6%9D%A8%E5%93%B2&rft.date=2024-12-01&rft.pub=%E8%8B%8F%E5%B7%9E%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F+%E8%8B%8F%E5%B7%9E+215006&rft.issn=1673-9418&rft.volume=18&rft.issue=12&rft.spage=3175&rft.epage=3188&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.2401006&rft.externalDocID=jsjkxyts202412007
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg