融合残差网络的自监督社交推荐算法

TP391; 基于图神经网络的社交推荐算法,通过社交图和交互图的信息来学习用户和项目的嵌入,得到最终的推荐结果.但是现有算法主要利用静态的社交图结构,无法挖掘用户之间潜在的链接关系,同时也没有解决用户与项目交互行为中的噪声问题.提出了一种融合残差网络的自监督社交推荐算法.采用变分超图自编码器对社交网络进行链接预测,得到重构的社交图,以此来挖掘隐藏在用户间的积极链接关系;利用注意力机制为原始社交图和重构后的残差社交图分配不同的注意力系数,得到更加精确的用户表征;为了缓解数据中的噪声问题,构建了自适应的超图全局关系提取器,在该提取器的协作下利用局部嵌入信息和全局嵌入信息创建自监督信号,从而优化局部...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 Vol. 18; no. 12; pp. 3175 - 3188
Main Authors 王玉洁, 杨哲
Format Journal Article
LanguageChinese
Published 苏州大学 计算机科学与技术学院,江苏 苏州 215006 01.12.2024
江苏省计算机信息处理技术重点实验室,江苏 苏州 215006
江苏省大数据智能工程实验室,江苏 苏州 215006
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.2401006

Cover

More Information
Summary:TP391; 基于图神经网络的社交推荐算法,通过社交图和交互图的信息来学习用户和项目的嵌入,得到最终的推荐结果.但是现有算法主要利用静态的社交图结构,无法挖掘用户之间潜在的链接关系,同时也没有解决用户与项目交互行为中的噪声问题.提出了一种融合残差网络的自监督社交推荐算法.采用变分超图自编码器对社交网络进行链接预测,得到重构的社交图,以此来挖掘隐藏在用户间的积极链接关系;利用注意力机制为原始社交图和重构后的残差社交图分配不同的注意力系数,得到更加精确的用户表征;为了缓解数据中的噪声问题,构建了自适应的超图全局关系提取器,在该提取器的协作下利用局部嵌入信息和全局嵌入信息创建自监督信号,从而优化局部的嵌入表示,进而缓解噪声影响.该算法在Ciao、Epinions和Yelp三个数据集上与NGCF、LightGCN、MHCN等基线模型进行对比实验.在Ciao数据集上,Recall@10提升了17.1%~48.5%,NDCG@10提升了1.4%~37.9%;在Epinions数据集上,Recall@10提升了8.3%~56.2%,NDCG@10提升了3.7%~29.8%;在Yelp数据集上,Recall@10提升了9.1%~53.3%,NDCG@10提升了11.2%~66.6%.实验结果表明,该算法相较于基准模型有良好的推荐性能.
ISSN:1673-9418
DOI:10.3778/j.issn.1673-9418.2401006