循环神经网络在雷达临近预报中的应用
该文将循环神经网络(recurrent neural network,RNN)应用于雷达临近预报.使用预测循环神经网络(predic-tive RNN)架构,利用雷达历史组合反射率因子建模,给出雷达组合反射率因子未来1 h的预报结果.预测循环神经网络的核心是在长短时记忆单元(long short-term memory,LSTM)中增加时空记忆模块,能够提取雷达回波不同尺度的空间特征,配合循环神经网络架构,可以有效解决反射率因子预测问题.北京大兴雷达和广州雷达长时间序列的独立检验结果和2个强对流天气个例检验结果表明:该方法和传统的基于交叉相关法的1h雷达外推临近预报相比,在20 dBZ和30...
        Saved in:
      
    
          | Published in | 应用气象学报 Vol. 30; no. 1; pp. 61 - 69 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            国家气象中心,北京,100081%清华大学软件学院,北京,100084
    
        2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1001-7313 | 
| DOI | 10.11898/1001-7313.20190106 | 
Cover
| Summary: | 该文将循环神经网络(recurrent neural network,RNN)应用于雷达临近预报.使用预测循环神经网络(predic-tive RNN)架构,利用雷达历史组合反射率因子建模,给出雷达组合反射率因子未来1 h的预报结果.预测循环神经网络的核心是在长短时记忆单元(long short-term memory,LSTM)中增加时空记忆模块,能够提取雷达回波不同尺度的空间特征,配合循环神经网络架构,可以有效解决反射率因子预测问题.北京大兴雷达和广州雷达长时间序列的独立检验结果和2个强对流天气个例检验结果表明:该方法和传统的基于交叉相关法的1h雷达外推临近预报相比,在20 dBZ和30 dBZ检验项目内,临界成功指数(CSI)可以提升0.15~0.30,命中率(POD)提高0.15~0.25,虚警率(FAR)降低0.15~0.20,该方法对反射率因子强度变化有一定预报能力. | 
|---|---|
| ISSN: | 1001-7313 | 
| DOI: | 10.11898/1001-7313.20190106 |