基于深度时频特征学习的雷达辐射源识别

TN971; 针对雷达辐射源识别中拓展能力不足和识别率不高问题进行研究,提出一种基于深度时频特征学习的智能识别方法.基于降采样短时傅里叶变换高效提取具备较高辨识度和稳定性的浅层二维时频特征,利用信号局部频域维稀疏性完成降噪等预处理;设计用于深度特征学习与识别的卷积神经网络,并采用不同尺度卷积核组合扩展网络广度,强化特征表征能力;利用高信噪比条件下8种辐射源信号样本对网络进行训练调优,低信噪比样本测试验证算法和网络的有效性.仿真结果表明,该方式在-8 dB信噪比条件下能达到98.31%的整体平均识别率,具备较强的鲁棒性....

Full description

Saved in:
Bibliographic Details
Published in国防科技大学学报 Vol. 42; no. 6; pp. 112 - 119
Main Authors 李东瑾, 杨瑞娟, 董睿杰
Format Journal Article
LanguageChinese
Published 空军预警学院 预警情报系,湖北 武汉 430019 28.12.2020
Subjects
Online AccessGet full text
ISSN1001-2486
DOI10.11887/j.cn.202006014

Cover

More Information
Summary:TN971; 针对雷达辐射源识别中拓展能力不足和识别率不高问题进行研究,提出一种基于深度时频特征学习的智能识别方法.基于降采样短时傅里叶变换高效提取具备较高辨识度和稳定性的浅层二维时频特征,利用信号局部频域维稀疏性完成降噪等预处理;设计用于深度特征学习与识别的卷积神经网络,并采用不同尺度卷积核组合扩展网络广度,强化特征表征能力;利用高信噪比条件下8种辐射源信号样本对网络进行训练调优,低信噪比样本测试验证算法和网络的有效性.仿真结果表明,该方式在-8 dB信噪比条件下能达到98.31%的整体平均识别率,具备较强的鲁棒性.
ISSN:1001-2486
DOI:10.11887/j.cn.202006014