知识图谱中实体关系抽取方法研究

TP391; 实体关系抽取作为知识图谱构建的基础得到了越来越多研究人员的关注.实体关系抽取能够自动、准确地从大量数据中获取知识,并以结构化形式表示和存储.因此,实体关系抽取的正确性直接影响到知识图谱构建的准确性和后续知识图谱应用效果.然而,针对复杂结构、开放领域、多语言、多模态、小样本数据和实体关系联合抽取等不同研究热点,现存的实体关系抽取方法仍存在一些局限性.基于当前实体关系抽取研究热点领域将实体关系抽取分为复杂结构研究领域、开放领域、多语言研究领域、多模态研究领域、小样本数据研究领域和实体关系联合抽取六个方面,将每个方面按照具体问题进行分类并列举出一些解决方法.不仅系统梳理了每一个类别当前...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 Vol. 18; no. 3; pp. 574 - 596
Main Authors 张西硕, 柳林, 王海龙, 苏贵斌, 刘静
Format Journal Article
LanguageChinese
Published 内蒙古师范大学 计算机科学联合创新实验室,呼和浩特 010022%内蒙古师范大学 教务处,呼和浩特 010022%内蒙古大学 图书馆,呼和浩特 010021 01.03.2024
内蒙古师范大学 计算机科学技术学院,呼和浩特 010022
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.2305019

Cover

More Information
Summary:TP391; 实体关系抽取作为知识图谱构建的基础得到了越来越多研究人员的关注.实体关系抽取能够自动、准确地从大量数据中获取知识,并以结构化形式表示和存储.因此,实体关系抽取的正确性直接影响到知识图谱构建的准确性和后续知识图谱应用效果.然而,针对复杂结构、开放领域、多语言、多模态、小样本数据和实体关系联合抽取等不同研究热点,现存的实体关系抽取方法仍存在一些局限性.基于当前实体关系抽取研究热点领域将实体关系抽取分为复杂结构研究领域、开放领域、多语言研究领域、多模态研究领域、小样本数据研究领域和实体关系联合抽取六个方面,将每个方面按照具体问题进行分类并列举出一些解决方法.不仅系统梳理了每一个类别当前存在的问题和解决方法,还归纳了每个类别的研究成果,并从定量分析和定性分析两个维度,详细地分析了每个方法的优点和缺点.最后,总结了当前热点领域中待解决的问题,同时展望了知识图谱中实体关系抽取方法未来的发展趋势.
ISSN:1673-9418
DOI:10.3778/j.issn.1673-9418.2305019