知识图谱推荐系统研究综述

TP391; 推荐系统可以在海量的数据信息中获取用户偏好,从而更好地实现个性化推荐,提高用户体检,以及解决互联网中的信息过载问题,但推荐系统仍然存在冷启动和数据稀疏问题.知识图谱作为一种拥有大量实体和丰富语义关系的结构化知识库,不但能够提高推荐系统的准确性,还能够为推荐项目提供可解释性,从而增强用户对推荐系统的信任度,为解决推荐系统中存在的一系列关键问题提供了新方法、新思路.首先针对知识图谱推荐系统进行研究与分析,以应用领域为分类依据将知识图谱推荐系统分为多领域知识图谱推荐系统和特定领域知识图谱推荐系统,同时根据这些知识图谱推荐方法的特点进一步分类,对每类方法进行定量分析和定性分析;之后列举出...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 Vol. 17; no. 4; pp. 771 - 791
Main Authors 赵晔辉, 柳林, 王海龙, 韩海燕, 裴冬梅
Format Journal Article
LanguageChinese
Published 内蒙古师范大学 计算机科学技术学院,呼和浩特 010022%内蒙古师范大学 国际设计艺术学院,呼和浩特 010022 10.04.2023
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.2205052

Cover

More Information
Summary:TP391; 推荐系统可以在海量的数据信息中获取用户偏好,从而更好地实现个性化推荐,提高用户体检,以及解决互联网中的信息过载问题,但推荐系统仍然存在冷启动和数据稀疏问题.知识图谱作为一种拥有大量实体和丰富语义关系的结构化知识库,不但能够提高推荐系统的准确性,还能够为推荐项目提供可解释性,从而增强用户对推荐系统的信任度,为解决推荐系统中存在的一系列关键问题提供了新方法、新思路.首先针对知识图谱推荐系统进行研究与分析,以应用领域为分类依据将知识图谱推荐系统分为多领域知识图谱推荐系统和特定领域知识图谱推荐系统,同时根据这些知识图谱推荐方法的特点进一步分类,对每类方法进行定量分析和定性分析;之后列举出知识图谱推荐系统在应用领域中常用的数据集,对数据集的规模和特点进行概述;最后对知识图谱推荐系统未来的研究方向进行展望和总结.
ISSN:1673-9418
DOI:10.3778/j.issn.1673-9418.2205052