基于遗传算法优化XGBoost的油浸式变压器故障诊断方法

TM41; 为了提高油浸式变压器故障诊断的精度及可靠性,研究了一种基于遗传算法优化极端梯度提升(XGBoost)的油浸式变压器故障诊断方法.首先,以油中溶解气体分析(DGA)为依据,采用无编码比值方法提取油浸式变压器的9维故障特征,并对数据样本进行归一化处理;以归一化样本为输入建立基于XGBoost的故障诊断模型,并采用遗传算法对模型中的多个超参数同时进行优化.在算例部分,收集547例故障类型确定的DGA数据进行对比实验,结果表明与现有传统方法相比,所提方法的诊断精度和稳定性有显著提升;同时验证了遗传算法对故障诊断模型的优化提升效果....

Full description

Saved in:
Bibliographic Details
Published in电力自动化设备 Vol. 41; no. 2; pp. 200 - 206
Main Authors 张又文, 冯斌, 陈页, 廖伟涵, 郭创新
Format Journal Article
LanguageChinese
Published 浙江大学 电气工程学院,浙江 杭州 310027 10.02.2021
Subjects
Online AccessGet full text
ISSN1006-6047
DOI10.16081/j.epae.202012021

Cover

More Information
Summary:TM41; 为了提高油浸式变压器故障诊断的精度及可靠性,研究了一种基于遗传算法优化极端梯度提升(XGBoost)的油浸式变压器故障诊断方法.首先,以油中溶解气体分析(DGA)为依据,采用无编码比值方法提取油浸式变压器的9维故障特征,并对数据样本进行归一化处理;以归一化样本为输入建立基于XGBoost的故障诊断模型,并采用遗传算法对模型中的多个超参数同时进行优化.在算例部分,收集547例故障类型确定的DGA数据进行对比实验,结果表明与现有传统方法相比,所提方法的诊断精度和稳定性有显著提升;同时验证了遗传算法对故障诊断模型的优化提升效果.
ISSN:1006-6047
DOI:10.16081/j.epae.202012021