基于遗传算法优化XGBoost的油浸式变压器故障诊断方法
TM41; 为了提高油浸式变压器故障诊断的精度及可靠性,研究了一种基于遗传算法优化极端梯度提升(XGBoost)的油浸式变压器故障诊断方法.首先,以油中溶解气体分析(DGA)为依据,采用无编码比值方法提取油浸式变压器的9维故障特征,并对数据样本进行归一化处理;以归一化样本为输入建立基于XGBoost的故障诊断模型,并采用遗传算法对模型中的多个超参数同时进行优化.在算例部分,收集547例故障类型确定的DGA数据进行对比实验,结果表明与现有传统方法相比,所提方法的诊断精度和稳定性有显著提升;同时验证了遗传算法对故障诊断模型的优化提升效果....
Saved in:
Published in | 电力自动化设备 Vol. 41; no. 2; pp. 200 - 206 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
浙江大学 电气工程学院,浙江 杭州 310027
10.02.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1006-6047 |
DOI | 10.16081/j.epae.202012021 |
Cover
Summary: | TM41; 为了提高油浸式变压器故障诊断的精度及可靠性,研究了一种基于遗传算法优化极端梯度提升(XGBoost)的油浸式变压器故障诊断方法.首先,以油中溶解气体分析(DGA)为依据,采用无编码比值方法提取油浸式变压器的9维故障特征,并对数据样本进行归一化处理;以归一化样本为输入建立基于XGBoost的故障诊断模型,并采用遗传算法对模型中的多个超参数同时进行优化.在算例部分,收集547例故障类型确定的DGA数据进行对比实验,结果表明与现有传统方法相比,所提方法的诊断精度和稳定性有显著提升;同时验证了遗传算法对故障诊断模型的优化提升效果. |
---|---|
ISSN: | 1006-6047 |
DOI: | 10.16081/j.epae.202012021 |