基于分块核主成分分析和支持向量机的故障检测

针对工业系统监测数据为非线性,且难以辨识复杂工作过程中故障位置的问题,提出一种基于分块核主成分分析(BKPCA)和最小二乘支持向量机(LS-SVM)的集成故障检测方法.首先对系统监测变量进行分块,使用KPCA对每个分块在特征空间中建立T 2和平方预测误差(SPE)统计量来实时监测系统健康状态,并使用LS-SVM对上述过程检测出来的故障数据进行再次判断.随后计算出现故障后计算每一分块的故障贡献率,进而确定发生故障的分块.由于采用了并行分块算法,可以较简单的确定故障发生位置,提高计算效率,同时LS-SVM方法的应用也可以提升故障检测的精度.使用田纳西-伊斯曼化工(TE)过程数据对本文所提方法进行仿...

Full description

Saved in:
Bibliographic Details
Published in控制理论与应用 Vol. 37; no. 4; pp. 847 - 854
Main Authors 李锦冰, 韩冰, 冯守渤, 张佳冬, 李宇, 钟凯, 韩敏
Format Journal Article
LanguageChinese
Published 大连理工大学电子信息与电气工程学部,辽宁大连,116024%上海船舶运输科学研究所航运技术与安全国家重点实验室,上海,200000 01.04.2020
Subjects
Online AccessGet full text
ISSN1000-8152
DOI10.7641/CTA.2019.80923

Cover

More Information
Summary:针对工业系统监测数据为非线性,且难以辨识复杂工作过程中故障位置的问题,提出一种基于分块核主成分分析(BKPCA)和最小二乘支持向量机(LS-SVM)的集成故障检测方法.首先对系统监测变量进行分块,使用KPCA对每个分块在特征空间中建立T 2和平方预测误差(SPE)统计量来实时监测系统健康状态,并使用LS-SVM对上述过程检测出来的故障数据进行再次判断.随后计算出现故障后计算每一分块的故障贡献率,进而确定发生故障的分块.由于采用了并行分块算法,可以较简单的确定故障发生位置,提高计算效率,同时LS-SVM方法的应用也可以提升故障检测的精度.使用田纳西-伊斯曼化工(TE)过程数据对本文所提方法进行仿真验证,试验结果表明所提方法取得了较好效果.
ISSN:1000-8152
DOI:10.7641/CTA.2019.80923