多机器人同步定位与地图构建的地图融合算法的改进
本文主要研究了多机器人同步定位与地图构建(SLAM)的地图实时融合问题.在本文中提出一种混合的SLAM算法(HybridSLAM)算法,可以同时观测和更新多个路标,并根据FastSLAM2.0思想利用选取的最准确的路标观测值来修正机器人位姿.然后,在改进HybridSLAM算法基础上,进一步提出一种改进的多机器人HybridSLAM算法(MR-IHybridSLAM).每个机器人在不同初始位置运行IHybridSLAM算法构建子地图,并将子地图信息实时发送到同一工作站中.根据卡尔曼滤波(KF)原理将每个机器人构建的子地图融合成全局地图.最后,通过仿真实验构建多机器人融合的特征地图并与单一机器人...
Saved in:
Published in | 控制理论与应用 Vol. 36; no. 8; pp. 1345 - 1350 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
东北大学机械工程与自动化学院,辽宁沈阳,110819
01.08.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1000-8152 |
DOI | 10.7641/CTA.2018.80308 |
Cover
Summary: | 本文主要研究了多机器人同步定位与地图构建(SLAM)的地图实时融合问题.在本文中提出一种混合的SLAM算法(HybridSLAM)算法,可以同时观测和更新多个路标,并根据FastSLAM2.0思想利用选取的最准确的路标观测值来修正机器人位姿.然后,在改进HybridSLAM算法基础上,进一步提出一种改进的多机器人HybridSLAM算法(MR-IHybridSLAM).每个机器人在不同初始位置运行IHybridSLAM算法构建子地图,并将子地图信息实时发送到同一工作站中.根据卡尔曼滤波(KF)原理将每个机器人构建的子地图融合成全局地图.最后,通过仿真实验构建多机器人融合的特征地图并与单一机器人快速的SLAM算法(FastSLAM)和HybridSLAM算法构建的地图进行误差对比,进一步来验证该算法的准确性、快速性和可行性. |
---|---|
ISSN: | 1000-8152 |
DOI: | 10.7641/CTA.2018.80308 |