带有非线性边界和扰动输入的波动方程的输出反馈控制

无穷维系统的输出反馈控制是控制理论中重要的研究课题,相对于线性边界输入而言,非线性边界条件更多应用于实际的数学模型中,容易引起各种不同的动力学行为,如混沌声振动、倍周期分岔、方波等.本文研究了左端具有非线性位移边界条件,右端带有总扰动输入的一维波动方程的输出反馈镇定问题.首先,利用算子半群理论证明了开环系统的适定性;其次,由于内部非线性项和外部扰动的存在,通过构造无穷维扰动估计器,证明了该估计器能够实时在线估计总扰动;紧接着,借助于原系统的量测输出信号设计状态观测器,构造输出反馈控制器并得到了闭环系统;最后,证明了该闭环系统的适定性和渐近稳定性....

Full description

Saved in:
Bibliographic Details
Published in控制理论与应用 Vol. 41; no. 8; pp. 1459 - 1468
Main Authors 张亚超, 刘军军
Format Journal Article
LanguageChinese
Published 太原理工大学数学学院,太原山西 030024 01.08.2024
Subjects
Online AccessGet full text
ISSN1000-8152
DOI10.7641/CTA.2023.20776

Cover

More Information
Summary:无穷维系统的输出反馈控制是控制理论中重要的研究课题,相对于线性边界输入而言,非线性边界条件更多应用于实际的数学模型中,容易引起各种不同的动力学行为,如混沌声振动、倍周期分岔、方波等.本文研究了左端具有非线性位移边界条件,右端带有总扰动输入的一维波动方程的输出反馈镇定问题.首先,利用算子半群理论证明了开环系统的适定性;其次,由于内部非线性项和外部扰动的存在,通过构造无穷维扰动估计器,证明了该估计器能够实时在线估计总扰动;紧接着,借助于原系统的量测输出信号设计状态观测器,构造输出反馈控制器并得到了闭环系统;最后,证明了该闭环系统的适定性和渐近稳定性.
ISSN:1000-8152
DOI:10.7641/CTA.2023.20776