基于预测与分解策略的大规模炼油过程生产调度算法

炼油生产调度为混合整数规划问题,随着规模的增大,其求解时间随问题规模呈指数增加,使得大规模长周期炼油生产调度问题难以在合理的时间内求解.针对该问题,本文提出了一种基于生产任务预测与分解策略的炼油生产调度算法,该算法能在短时间内获得大规模调度问题的满意解.所提算法将原问题沿时间轴分解为若干个调度时长相同的单时间段子问题,并设计了基于深度学习的单时间段生产任务(组分油产量)预测模型,用于协调子问题的求解.其中,生产任务预测模型通过易于获得的小规模问题的全局最优调度方案训练得到.最后,通过与商业求解器Cplex以及现有算法的对比,实验结果表明了所提算法的有效性....

Full description

Saved in:
Bibliographic Details
Published in控制理论与应用 Vol. 40; no. 5; pp. 833 - 846
Main Authors 陈远东, 丁进良
Format Journal Article
LanguageChinese
Published 东北大学流程工业综合自动化国家重点实验室,辽宁沈阳110819 01.05.2023
Subjects
Online AccessGet full text
ISSN1000-8152
DOI10.7641/CTA.2021.10701

Cover

More Information
Summary:炼油生产调度为混合整数规划问题,随着规模的增大,其求解时间随问题规模呈指数增加,使得大规模长周期炼油生产调度问题难以在合理的时间内求解.针对该问题,本文提出了一种基于生产任务预测与分解策略的炼油生产调度算法,该算法能在短时间内获得大规模调度问题的满意解.所提算法将原问题沿时间轴分解为若干个调度时长相同的单时间段子问题,并设计了基于深度学习的单时间段生产任务(组分油产量)预测模型,用于协调子问题的求解.其中,生产任务预测模型通过易于获得的小规模问题的全局最优调度方案训练得到.最后,通过与商业求解器Cplex以及现有算法的对比,实验结果表明了所提算法的有效性.
ISSN:1000-8152
DOI:10.7641/CTA.2021.10701