基于改进SSA-DBN的质子交换膜燃料电池水故障智能分类方法

TM911.4; 为了实现质子交换膜燃料电池(PEMFC)系统水故障的高效快速分类,提出了基于改进麻雀搜索算法(SSA)优化深度置信网络(DBN)的PEMFC故障分类方法.采用归一化处理消除故障数据参数之间量纲不同的影响,使用核主成分分析对数据进行故障特征提取,有效地缩减了原始数据维度,降低了运算复杂度,并避免低贡献度数据对故障分类造成干扰.引入柯西-高斯变异策略改进SSA,并利用SSA对DBN进行参数寻优,确定网络结构,通过优化后的DBN实现对PEMFC水故障的快速分类.对3 000组PEMFC水故障数据进行测试,结果表明:所提方法可以快速准确地识别PEMFC的正常状态、膜干故障、水淹故障3...

Full description

Saved in:
Bibliographic Details
Published in电力自动化设备 Vol. 44; no. 4; pp. 18 - 24
Main Authors 刘昕宇, 韩莹, 陈维荣, 李奇, 杨哲昊
Format Journal Article
LanguageChinese
Published 西南交通大学 电气工程学院,四川 成都 611756 01.04.2024
Subjects
Online AccessGet full text
ISSN1006-6047
DOI10.16081/j.epae.202310008

Cover

More Information
Summary:TM911.4; 为了实现质子交换膜燃料电池(PEMFC)系统水故障的高效快速分类,提出了基于改进麻雀搜索算法(SSA)优化深度置信网络(DBN)的PEMFC故障分类方法.采用归一化处理消除故障数据参数之间量纲不同的影响,使用核主成分分析对数据进行故障特征提取,有效地缩减了原始数据维度,降低了运算复杂度,并避免低贡献度数据对故障分类造成干扰.引入柯西-高斯变异策略改进SSA,并利用SSA对DBN进行参数寻优,确定网络结构,通过优化后的DBN实现对PEMFC水故障的快速分类.对3 000组PEMFC水故障数据进行测试,结果表明:所提方法可以快速准确地识别PEMFC的正常状态、膜干故障、水淹故障3种健康状态;总体的分类准确率为98.67%,运算时间为0.89 s,相比支持向量机、概率神经网络方法,所提方法的故障分类精度分别提升了4%、3.34%,运算时间分别减少了15.35、0.35 s.
ISSN:1006-6047
DOI:10.16081/j.epae.202310008