基于近红外光谱和深度学习数据增强的大米品种检测
O657.33; 近红外光谱和深度学习结合的思路是大米品种检测的重要研究方向,其准确检测模型的建立依赖大规模的样本数据,然而采集和预处理样本耗时巨大,对准确性的提升造成限制.为解决上述不足,便于深入探究近红外光谱结合深度学习方法在大米品种检测领域应用的可行性,该研究提出基于近红外光谱结合改进型深度卷积生成式对抗神经网络(deep convolutional generative adversarial network,DCGAN)数据增强的大米品种检测方法.首先,在相同环境下采集4种大米品种的近红外光谱并对原始光谱数据进行预处理,使用去趋势校正(detrend correction,DC)和无...
Saved in:
Published in | 农业工程学报 Vol. 39; no. 19; pp. 250 - 257 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
东北林业大学计算机与控制工程学院,哈尔滨 150040
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.11975/j.issn.1002-6819.202305088 |
Cover
Summary: | O657.33; 近红外光谱和深度学习结合的思路是大米品种检测的重要研究方向,其准确检测模型的建立依赖大规模的样本数据,然而采集和预处理样本耗时巨大,对准确性的提升造成限制.为解决上述不足,便于深入探究近红外光谱结合深度学习方法在大米品种检测领域应用的可行性,该研究提出基于近红外光谱结合改进型深度卷积生成式对抗神经网络(deep convolutional generative adversarial network,DCGAN)数据增强的大米品种检测方法.首先,在相同环境下采集4种大米品种的近红外光谱并对原始光谱数据进行预处理,使用去趋势校正(detrend correction,DC)和无信息变量消除算法(uninformative variable elimination,UVE)消除无用光谱特征点.然后,建立改进型DCGAN模型对预处理后的光谱数据进行数据增强,对比试验结果表明,改进型DCGAN相比与传统数据增强方法,改进型DCGAN生成数据的结构相似性指标更优.最后,研究不同数据增强方法结合不同分类方法建立大米品种分类模型的性能,对比试验结果表明,改进型DCGAN数据增强结合一维卷积神经网络(one-dimensional convolution neural network,1D-CNN)分类算法所建模型面向测试集的准确率最高,为98.21%,为简便准确的大米品种检测方案提供了新思路. |
---|---|
ISSN: | 1002-6819 |
DOI: | 10.11975/j.issn.1002-6819.202305088 |