基于Swin Transformer模型的玉米生长期分类
TP391; 快速准确识别玉米生长的不同阶段,对于玉米种植周期的高效精准管理具有重要意义.针对大田环境下玉米生长阶段分类辨识易受复杂背景、户外光照等因素影响的问题,该研究采用无人机获取玉米不同生长阶段的图像信息,以苗期、拔节期、小喇叭口期、大喇叭口期4个生长阶段为对象,利用Swin Transformer(Swin-T)模型引入迁移学习实现玉米不同生长阶段的快速识别.首先结合玉米垄面走向特性,将训练集旋转8次用以扩充数据集;为探究各模型在非清晰数据集上的表现,采用高斯模糊方法将测试集转换6次;最后以AlexNet,VGG16,GoogLeNet做为对比,评估Swin-T模型性能.试验结果表明,...
Saved in:
| Published in | 农业工程学报 Vol. 38; no. 14; pp. 191 - 200 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
中国农业大学工学院,北京 100083%中国农业大学烟台研究院,烟台 264670%国家农机装备创新中心,洛阳 471934%中国农业大学现代农业装备优化设计北京市重点实验室,北京 100083
01.07.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-6819 |
| DOI | 10.11975/j.issn.1002-6819.2022.14.022 |
Cover
| Summary: | TP391; 快速准确识别玉米生长的不同阶段,对于玉米种植周期的高效精准管理具有重要意义.针对大田环境下玉米生长阶段分类辨识易受复杂背景、户外光照等因素影响的问题,该研究采用无人机获取玉米不同生长阶段的图像信息,以苗期、拔节期、小喇叭口期、大喇叭口期4个生长阶段为对象,利用Swin Transformer(Swin-T)模型引入迁移学习实现玉米不同生长阶段的快速识别.首先结合玉米垄面走向特性,将训练集旋转8次用以扩充数据集;为探究各模型在非清晰数据集上的表现,采用高斯模糊方法将测试集转换6次;最后以AlexNet,VGG16,GoogLeNet做为对比,评估Swin-T模型性能.试验结果表明,Swin-T模型在原始测试集的总体准确率为98.7%,相比于AlexNet,VGG16,GoogLeNet模型分别高出6.9、2.7和2.0个百分点;在错误分类中,大喇叭口期和小喇叭口期由于冠层特征相似,造成识别错误的概率最大;在非清晰数据集下,AlexNet,VGG16,GoogLeNet模型精度总体退化指数分别为12.4%、10.4%和15.0%,Swin-T模型总体退化指数为8.31%,并且退化均衡度、平均退化指数、最大退化准确率均表现最佳.研究结果表明:在分类精度、模糊图像输入等方面,Swin-T模型能够较好地满足实际生产中玉米不同生长阶段分类识别的需求,可为玉米生长阶段的智能化监测提供技术支撑. |
|---|---|
| ISSN: | 1002-6819 |
| DOI: | 10.11975/j.issn.1002-6819.2022.14.022 |