局部信息和全局信息相结合的点云处理网络

TP391.41; 针对当前主流点云处理网络仅依靠局部邻域进行特征聚合导致特征提取能力不足,以及使用最大值池化造成信息损失的问题,提出了一种基于注意力的局部信息和全局信息相结合的点云处理网络.首先提出了基于通道自注意力进行局部特征聚合的方法,减少了信息的损失;然后为捕获点的远程依赖信息,设计了一种动态学习关键点的方法获取全局信息;最后构建了一种基于空间注意力的特征融合模块,使每个点均能学习全局上下文信息.在几个常用点云数据集上对方法进行了实验验证,在ModelNet40分类任务上实现了94.0%的总体分类精度、91.7%的平均分类精度;在ScanObjectNN分类任务上实现了81.5%的总体...

Full description

Saved in:
Bibliographic Details
Published in浙江大学学报(理学版) Vol. 50; no. 6; pp. 770 - 780
Main Authors 刘玉杰, 原亚夫, 孙晓瑞, 李宗民
Format Journal Article
LanguageChinese
Published 中国石油大学(华东)计算机科学与技术学院,山东 青岛 266580 25.11.2023
Subjects
Online AccessGet full text
ISSN1008-9497
DOI10.3785/j.issn.1008-9497.2023.06.012

Cover

More Information
Summary:TP391.41; 针对当前主流点云处理网络仅依靠局部邻域进行特征聚合导致特征提取能力不足,以及使用最大值池化造成信息损失的问题,提出了一种基于注意力的局部信息和全局信息相结合的点云处理网络.首先提出了基于通道自注意力进行局部特征聚合的方法,减少了信息的损失;然后为捕获点的远程依赖信息,设计了一种动态学习关键点的方法获取全局信息;最后构建了一种基于空间注意力的特征融合模块,使每个点均能学习全局上下文信息.在几个常用点云数据集上对方法进行了实验验证,在ModelNet40分类任务上实现了94.0%的总体分类精度、91.7%的平均分类精度;在ScanObjectNN分类任务上实现了81.5%的总体分类精度、78.1%的平均分类精度;在ShapeNet 分割任务上实现了86.5%的平均交并比.表明提出的点云处理网络在分类、分割等任务中的精度均较PointNet、PointNet++、DGCNN等经典网络有显著提升,较其他点云处理网络也有不同程度的提高.
ISSN:1008-9497
DOI:10.3785/j.issn.1008-9497.2023.06.012