北京市农田土壤有机碳密度空间变异及影响因素

X825; 探明区域农田土壤有机碳密度(soil organic carbon density,SOCD)空间分布特征及其影响因素对增加农田土壤碳汇、实现"双碳"目标具有重要意义.该研究以北京市为研究区,基于2022年采样实测的0~60 cm各层SOCD数据,采用3D概念模型、Mantel test、地理加权回归、地理探测器模型开展SOCD空间变异分析,探究不同因素对SOCD的影响程度及各因素间交互后的作用力.结果表明:1)研究区SOCD在空间上呈自表层向深层逐渐降低的趋势,其中0~15cm 土层的SOCD显著高于30~60 cm(P<0.05),0~60 cm 土层的有机...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 40; no. 9; pp. 119 - 127
Main Authors 孔晨晨, 张世文, 袁胜君, 王维瑞, 夏沙沙, 胡睿鑫
Format Journal Article
LanguageChinese
Published 安徽理工大学地球与环境学院,淮南 232001%北京市密云区土肥工作站,北京 101500%北京市耕地建设保护中心,北京 100020 01.05.2024
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202312032

Cover

Abstract X825; 探明区域农田土壤有机碳密度(soil organic carbon density,SOCD)空间分布特征及其影响因素对增加农田土壤碳汇、实现"双碳"目标具有重要意义.该研究以北京市为研究区,基于2022年采样实测的0~60 cm各层SOCD数据,采用3D概念模型、Mantel test、地理加权回归、地理探测器模型开展SOCD空间变异分析,探究不同因素对SOCD的影响程度及各因素间交互后的作用力.结果表明:1)研究区SOCD在空间上呈自表层向深层逐渐降低的趋势,其中0~15cm 土层的SOCD显著高于30~60 cm(P<0.05),0~60 cm 土层的有机碳储量约为10.80 Tg.2)土壤含水率、土壤亚类、地形部位分别对0~15、15~60、45~60 cm 土层的SOCD产生了显著影响(P<0.05);土壤亚类、土壤母质、土壤质地、地形部位与SOCD的空间关联性较强,关联程度自表层向下逐渐增大.3)各重要因子交互后对研究区SOCD的解释能力呈双因子增强或非线性增强的关系,土壤亚类与其他各因子交互后对SOCD的解释能力提升最为突出.今后研究区内开展土壤有机碳空间变异等相关研究时应尽可能综合考虑多因素间的交互作用,其中土壤亚类(土壤类型)可作为重点指标.研究结果可为优化农田资源空间结构,制定农田固碳增汇措施提供科学参考.
AbstractList X825; 探明区域农田土壤有机碳密度(soil organic carbon density,SOCD)空间分布特征及其影响因素对增加农田土壤碳汇、实现"双碳"目标具有重要意义.该研究以北京市为研究区,基于2022年采样实测的0~60 cm各层SOCD数据,采用3D概念模型、Mantel test、地理加权回归、地理探测器模型开展SOCD空间变异分析,探究不同因素对SOCD的影响程度及各因素间交互后的作用力.结果表明:1)研究区SOCD在空间上呈自表层向深层逐渐降低的趋势,其中0~15cm 土层的SOCD显著高于30~60 cm(P<0.05),0~60 cm 土层的有机碳储量约为10.80 Tg.2)土壤含水率、土壤亚类、地形部位分别对0~15、15~60、45~60 cm 土层的SOCD产生了显著影响(P<0.05);土壤亚类、土壤母质、土壤质地、地形部位与SOCD的空间关联性较强,关联程度自表层向下逐渐增大.3)各重要因子交互后对研究区SOCD的解释能力呈双因子增强或非线性增强的关系,土壤亚类与其他各因子交互后对SOCD的解释能力提升最为突出.今后研究区内开展土壤有机碳空间变异等相关研究时应尽可能综合考虑多因素间的交互作用,其中土壤亚类(土壤类型)可作为重点指标.研究结果可为优化农田资源空间结构,制定农田固碳增汇措施提供科学参考.
Abstract_FL This study aims to explore the spatial variability of soil organic carbon density(SOCD)and influencing factors in the carbon sink of farmland soils.Taking Beijing as the study area,the SOCD data was measured for each layer from 0 to 60 cm sampled in the field from June to October 2022.A conceptual model was established using 3D GMS.Then the SOCD was simulated to determine the spatial variability in three dimensions.According to the dummy variable models,the mantel test,the geographical weighted regression,and the GeoDetector models were used to explore the importance of different factors on the SOCD and the interactive contribution among the factors on both quantitative and spatial scales.The results showed that:1)The SOCD shared a spatial trend of decreasing from the surface to the deeper layers,with the SOCD significantly higher(P<0.05)in the 0-15 cm soil depth than in the 30-60 cm soil layer.The variability of SOCD was more substantial in the deeper soil layers.The soil organic carbon stock in 0-60 cm was 10.80 Tg.2)The spatial and scale effects were found in the intensity of different factors on the SOCD.The soil subclass,soil parent material,soil texture,soil water content,and topographic site were the significant influencing factors on the variation of SOCD in the study area.Among them,the soil water content,soil subclass,and topographic site were dominated(P<0.05)SOCD at the soil depths of 0-15,15-60,and 45-60 cm,respectively.Soil subclass,soil parent material,soil texture,and topographic site were spatially strongly associated with the SOCD.The intensity of their association gradually increased from the surface layer to the deeper layer.The disturbance by human activities gradually decreased in the soil below the surface layer.The factors that caused the variation of SOCD were shifted to the natural factors.3)The expression of SOCD showed a two-way or non-linear enhancement after the interaction of the significant factors.The soil subclass showed the most prominent enhancement to explain SOCD after interacting with each other factor.Among them,there was the strongest explanatory power for the SOCD at 0-30 cm soil depth after interaction with soil water content,with 0.724(0-15 cm)and 0.789(15-30 cm),respectively.The explanatory power of SOCD was the strongest at 30-60 cm soil depth after interaction with soil parent material,with 0.649(30-45 cm)and 0.784(45-60 cm),respectively.The interaction of multiple factors should be considered for the spatial variability of soil organic carbon and driving factors.Among them,soil subclasses(soil types)can be incorporated as a priority reference indicator,indicating the differences and the soil-forming parent material,texture configuration,and moisture condition of the environment.The finding can also provide the scientific references to optimize the spatial structure of farmland resources,in order to realize the carbon sequestration and sink enhancement in farmland.
Author 袁胜君
王维瑞
夏沙沙
孔晨晨
张世文
胡睿鑫
AuthorAffiliation 安徽理工大学地球与环境学院,淮南 232001%北京市密云区土肥工作站,北京 101500%北京市耕地建设保护中心,北京 100020
AuthorAffiliation_xml – name: 安徽理工大学地球与环境学院,淮南 232001%北京市密云区土肥工作站,北京 101500%北京市耕地建设保护中心,北京 100020
Author_FL HU Ruixin
WANG Weirui
KONG Chenchen
YUAN Shengjun
ZHANG Shiwen
XIA Shasha
Author_FL_xml – sequence: 1
  fullname: KONG Chenchen
– sequence: 2
  fullname: ZHANG Shiwen
– sequence: 3
  fullname: YUAN Shengjun
– sequence: 4
  fullname: WANG Weirui
– sequence: 5
  fullname: XIA Shasha
– sequence: 6
  fullname: HU Ruixin
Author_xml – sequence: 1
  fullname: 孔晨晨
– sequence: 2
  fullname: 张世文
– sequence: 3
  fullname: 袁胜君
– sequence: 4
  fullname: 王维瑞
– sequence: 5
  fullname: 夏沙沙
– sequence: 6
  fullname: 胡睿鑫
BookMark eNo9j81Kw0AUhWdRwVr7FC5cJd47k-kkK5HiHxTcdF8mnaS0yBQMom67KChKFwotGLCoCIKgYhcS9G28Db6FAcXVgbM433eWWMn2bcTYCoKLGCi51nO7SWJdBOBOzcfA5cAFchC8xMr_7SKrJkk3BIlCAXhYZut0Pv7Knuh9QMM0v3qh9Ibu7ufp6TzN8ts3eh5S9pA_Zt_jGY0m9DGg0Rl9vtLlBV1P89l0mS3Eej-Jqn9ZYc2tzWZ9x2nsbe_WNxpOgsC540UBSIgLI90WXATGV6ixMPIjlH6sZaBVWxsUWinjKaOEiWVoZOTXQm18UWGrv7NH2sbadlq9_uGBLYAte9JpH4fFWw8CQC5-ADZRZVo
ClassificationCodes X825
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202312032
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Spatial variation and influencing factors of soil organic carbon density in Beijing farmland of China
EndPage 127
ExternalDocumentID nygcxb202409012
GrantInformation_xml – fundername: (新疆综合考察项目); (粮食作物创新团队土壤评价与质量提升岗位专家项目); (国家重点研发计划)
  funderid: (新疆综合考察项目); (粮食作物创新团队土壤评价与质量提升岗位专家项目); (国家重点研发计划)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1022-4e9050f312ac3239d871a18198e158fa59a7cad13a77d47d73df5bd5e86bad83
ISSN 1002-6819
IngestDate Thu May 29 04:08:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords three-dimensional space simulation
space-related
土壤有机碳
影响因素
interaction
交互效应
soil organic carbon
三维空间模拟
空间相关
农田
farmland
influencing factor
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1022-4e9050f312ac3239d871a18198e158fa59a7cad13a77d47d73df5bd5e86bad83
PageCount 9
ParticipantIDs wanfang_journals_nygcxb202409012
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2024
Publisher 安徽理工大学地球与环境学院,淮南 232001%北京市密云区土肥工作站,北京 101500%北京市耕地建设保护中心,北京 100020
Publisher_xml – name: 安徽理工大学地球与环境学院,淮南 232001%北京市密云区土肥工作站,北京 101500%北京市耕地建设保护中心,北京 100020
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.465968
Snippet X825; 探明区域农田土壤有机碳密度(soil organic carbon density,SOCD)空间分布特征及其影响因素对增加农田土壤碳汇、实现"双碳"目标具有重要意义.该研究以北京市为研究区,基于2022年采样实测的0~60 cm各层SOCD数据,采用3D概念模型、Mantel...
SourceID wanfang
SourceType Aggregation Database
StartPage 119
Title 北京市农田土壤有机碳密度空间变异及影响因素
URI https://d.wanfangdata.com.cn/periodical/nygcxb202409012
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFB9KC6IH8RO_KWhOZetkJplJTpLZnaUIeqrQW5nZzNbTCv0A7bGHgqL0oFDBgkVFEBQVe5BF_xunxf_C995kd0erVL0M2eTlvd_72OQlZDKed6VreWwhTWiAb4uGsDpu5DkkckIq6wdFYC0dHr9xM5q5Ja7Pybmx8Xe1U0sry_l0Z_W375X8j1ehDvyKb8n-g2eHTKECyuBfeIKH4flXPmapZKrJdMxSwRLDTBNrEsVUQE0R01ATMw2tPtbAT93GggmZESwlAqVdATgAsQlYEhJNGzkgQ-AcUZMmGo0SE0Ei2kwromkOhEIvQzUtlnASGjLVokLCjI98oK_x62lxDa1A_LriABIlyQWNEoLUIiQRijByECyuRVcKaSQfFOokABHFVwKICzxH8zBLFequOBZUSGAAsw-wRyQxUylhASUSsgFYlzOd1ndPAjE6q0jxTgBTMjTASNE02M8f2LfSU6JLTFzTkxyW-APi0IEHCBUQU_kyoKZhL02qB_DnQR2ReUr2BQvFU5Da0lcT5AGx45xPTZo74sTUgogoK9xOAYGKVRFnEgQRNPdLmeK4--UfhEDRERxZs4EkixtyU4pWxF4Qfq1BPAhnHkPBBk1glT8gwOVLbTrG-TpSblJ187Xwa-OSrk2-3NFVeRyv7pzYnyLoWFKOgBKmhxKmA7wJMfDdbvvPd7D37i107uYYPz7kz5DxTQQxpOrj3oRJWkl7tP7guMUynCADvGYiGq3nJQ_xaxLDM2h4AkPScQwH4pB3eQDx6p8B0vuFvW7WW6ilwrPHvKNuDTtpqgHpuDe2evuEd8QsLLp7fIqT3rXy4ea3_tvy81q5vrX35EO59bx8-Wp36_7uVn_vxafy_XrZf733pv99c6fceFp-WSs3HpRfP5aPH5XPtvd2tk95s-10tjnTcN9qaSzhnlFDFNqXfhcAZp0wCLVVMc9g9aBVwaXqZlJncSezPMzi2IrYxqHtytzKQkV5ZlV42hvv3ekVZ7zJroggych4aH0rQl_pggs_y4soyzs5t_ysN-m0n3dD8dL8L_45dzDJee_waDi44I0vL64UF2F5sZxfck79ASuK0Fk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%8C%97%E4%BA%AC%E5%B8%82%E5%86%9C%E7%94%B0%E5%9C%9F%E5%A3%A4%E6%9C%89%E6%9C%BA%E7%A2%B3%E5%AF%86%E5%BA%A6%E7%A9%BA%E9%97%B4%E5%8F%98%E5%BC%82%E5%8F%8A%E5%BD%B1%E5%93%8D%E5%9B%A0%E7%B4%A0&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%AD%94%E6%99%A8%E6%99%A8&rft.au=%E5%BC%A0%E4%B8%96%E6%96%87&rft.au=%E8%A2%81%E8%83%9C%E5%90%9B&rft.au=%E7%8E%8B%E7%BB%B4%E7%91%9E&rft.date=2024-05-01&rft.pub=%E5%AE%89%E5%BE%BD%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%9C%B0%E7%90%83%E4%B8%8E%E7%8E%AF%E5%A2%83%E5%AD%A6%E9%99%A2%2C%E6%B7%AE%E5%8D%97+232001%25%E5%8C%97%E4%BA%AC%E5%B8%82%E5%AF%86%E4%BA%91%E5%8C%BA%E5%9C%9F%E8%82%A5%E5%B7%A5%E4%BD%9C%E7%AB%99%2C%E5%8C%97%E4%BA%AC+101500%25%E5%8C%97%E4%BA%AC%E5%B8%82%E8%80%95%E5%9C%B0%E5%BB%BA%E8%AE%BE%E4%BF%9D%E6%8A%A4%E4%B8%AD%E5%BF%83%2C%E5%8C%97%E4%BA%AC+100020&rft.issn=1002-6819&rft.volume=40&rft.issue=9&rft.spage=119&rft.epage=127&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202312032&rft.externalDocID=nygcxb202409012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg