大白猪多群体一步法基因组选择的应用效果分析

S114%S813.1; [目的]探究在拥有大量无基因型参考群的群体中,基因组选择(GS)方法与传统BLUP方法预测准确性的差异.同时,对比联合评估中GBLUP和一步法GBLUP的应用效果,为联合评估提供参考依据.[方法]使用 6 个大白猪群体(A~F)的校正达 100 kg体重日龄(DAYS_100)和校正达 100 kg体重背膘厚(BFT_100)2个性状进行分析,并估计遗传力及遗传相关.探究BLUP、GBLUP和ssGBLUP模型在不同群体及合并群体中的预测准确性.[结果](1)F群体BFT_100性状遗传力较低、仅为0.071,其他群体的BFT_100性状遗传力为0.205~0.383...

Full description

Saved in:
Bibliographic Details
Published in广东农业科学 Vol. 50; no. 11; pp. 113 - 122
Main Authors 卢宇金, 黄珍, 许华钊, 石少磊, 周洁, 张哲, 谢水华
Format Journal Article
LanguageChinese
Published 广东省农业技术推广中心,广东 广州 510520 2023
华南农业大学动物科学学院,广东 广州 510642%广东艾佩克科技有限公司,广东 广州 510470%广东省农业技术推广中心,广东 广州 510520%华南农业大学动物科学学院,广东 广州 510642
Subjects
Online AccessGet full text
ISSN1004-874X
DOI10.16768/j.issn.1004-874X.2023.11.011

Cover

Abstract S114%S813.1; [目的]探究在拥有大量无基因型参考群的群体中,基因组选择(GS)方法与传统BLUP方法预测准确性的差异.同时,对比联合评估中GBLUP和一步法GBLUP的应用效果,为联合评估提供参考依据.[方法]使用 6 个大白猪群体(A~F)的校正达 100 kg体重日龄(DAYS_100)和校正达 100 kg体重背膘厚(BFT_100)2个性状进行分析,并估计遗传力及遗传相关.探究BLUP、GBLUP和ssGBLUP模型在不同群体及合并群体中的预测准确性.[结果](1)F群体BFT_100性状遗传力较低、仅为0.071,其他群体的BFT_100性状遗传力为0.205~0.383.6个群体的DAYS_100性状遗传力为0.258~0.598.(2)除D群体2个性状间的遗传相关为0.211外,其他群体的遗传相关为负相关(-0.462~-0.200).(3)对于DAYS_100 性状,B、C、E和F群体中GBLUP模型的预测准确性最高.对于BFT_100 性状,A、B和C群体中ssGBLUP模型的预测准确性最高,而D和E群体中GBLUP模型的预测准确性最高.(4)F群体与A群体的场间关联率(CR)达 3.096%,而在F群体中,使用合并参考群的一步法基因组选择,可以提高BFT_100 性状的预测准确性.[结论]在基因型个体数>500 且群体占比>7%的群体中,GBLUP或ssGBLUP模型的预测准确性高于BLUP模型;利用ssGBLUP模型对场间关联率达到 3%的群体进行联合评估,可提高低遗传力性状的预测准确性.
AbstractList S114%S813.1; [目的]探究在拥有大量无基因型参考群的群体中,基因组选择(GS)方法与传统BLUP方法预测准确性的差异.同时,对比联合评估中GBLUP和一步法GBLUP的应用效果,为联合评估提供参考依据.[方法]使用 6 个大白猪群体(A~F)的校正达 100 kg体重日龄(DAYS_100)和校正达 100 kg体重背膘厚(BFT_100)2个性状进行分析,并估计遗传力及遗传相关.探究BLUP、GBLUP和ssGBLUP模型在不同群体及合并群体中的预测准确性.[结果](1)F群体BFT_100性状遗传力较低、仅为0.071,其他群体的BFT_100性状遗传力为0.205~0.383.6个群体的DAYS_100性状遗传力为0.258~0.598.(2)除D群体2个性状间的遗传相关为0.211外,其他群体的遗传相关为负相关(-0.462~-0.200).(3)对于DAYS_100 性状,B、C、E和F群体中GBLUP模型的预测准确性最高.对于BFT_100 性状,A、B和C群体中ssGBLUP模型的预测准确性最高,而D和E群体中GBLUP模型的预测准确性最高.(4)F群体与A群体的场间关联率(CR)达 3.096%,而在F群体中,使用合并参考群的一步法基因组选择,可以提高BFT_100 性状的预测准确性.[结论]在基因型个体数>500 且群体占比>7%的群体中,GBLUP或ssGBLUP模型的预测准确性高于BLUP模型;利用ssGBLUP模型对场间关联率达到 3%的群体进行联合评估,可提高低遗传力性状的预测准确性.
Abstract_FL [Objective]Exploring the difference in prediction accuracy between genome selection(GS)and traditional BLUP methods in the presence of a large number of non-genotype reference populations.Assessing the application effect of GBLUP and ssGBLUP in the joint evaluation to provide recommendations for joint evaluation.[Method]Two straits of days to reach 100 kg(DAYS_100)and the average backfat thickness at 100 kg(BFT_100)were analyzed in six Yorkshire populations,and the heritability and genetic correlation of the two traits were estimated.Exploring the prediction accuracy of BLUP,GBLUP and ssGBLUP models in different populations and combined populations.[Result](1)In F population,the heritability of BFT_100 was only 0.071,while in other populations it was between 0.205 and 0.383.The heritability of DAYS_100 in six populations ranged from 0.258 to 0.598.(2)The genetic correlation between the two traits in D population was 0.211,however,in other populations,the genetic correlations were negative,ranging from-0.462 to-0.200.(3)For DAYS_100 trait,the GBLUP model showed the best prediction accuracy in B,C,E,and F populations.For BFT_100 trait,the ssGBLUP model had the best prediction accuracy in populations A,B,and C,while the GBLUP model performed better in populations D and E.(4)The connectedness rating(CR)between F and A population was 3.096%.In F population,single-step genomic selection using combined reference populations can improve the prediction accuracy of BFT_100 trait.[Conclusion]When the number of genotyped individuals in the population exceeds 500 and the proportion is above 7%,the prediction accuracy of GBLUP or ssGBLUP model will be higher than that of BLUP model.ssGBLUP model can be used to improve the prediction accuracy of low heritability traits in joint population that the CR reaches 3%between population.
Author 石少磊
许华钊
周洁
谢水华
卢宇金
张哲
黄珍
AuthorAffiliation 广东省农业技术推广中心,广东 广州 510520;华南农业大学动物科学学院,广东 广州 510642%广东艾佩克科技有限公司,广东 广州 510470%广东省农业技术推广中心,广东 广州 510520%华南农业大学动物科学学院,广东 广州 510642
AuthorAffiliation_xml – name: 广东省农业技术推广中心,广东 广州 510520;华南农业大学动物科学学院,广东 广州 510642%广东艾佩克科技有限公司,广东 广州 510470%广东省农业技术推广中心,广东 广州 510520%华南农业大学动物科学学院,广东 广州 510642
Author_FL HUANG Zhen
ZHANG Zhe
XU Huazhao
XIE Shuihua
ZHOU Jie
SHI Shaolei
LU Yujin
Author_FL_xml – sequence: 1
  fullname: LU Yujin
– sequence: 2
  fullname: HUANG Zhen
– sequence: 3
  fullname: XU Huazhao
– sequence: 4
  fullname: SHI Shaolei
– sequence: 5
  fullname: ZHOU Jie
– sequence: 6
  fullname: ZHANG Zhe
– sequence: 7
  fullname: XIE Shuihua
Author_xml – sequence: 1
  fullname: 卢宇金
– sequence: 2
  fullname: 黄珍
– sequence: 3
  fullname: 许华钊
– sequence: 4
  fullname: 石少磊
– sequence: 5
  fullname: 周洁
– sequence: 6
  fullname: 张哲
– sequence: 7
  fullname: 谢水华
BookMark eNo9jz1LAzEchzNUsNZ-DHG6M_8kvdxNIsU3KLgouJW7XlJaJQWDqFuHIhU7CLaDVarDiS_g5CKV-mmaBL-FiuL0g2d4Hn5zKKdaSiC0ANiHgAfhUtNvaK18wJh5IWe7PsGE-gA-Bsih_D-fRUWtGwkuAeUQBTyPlk324K4mrvdssqH7yKaTy-lb277c29eBuR2b6zv33vlsn9nzJzfsmHHf9R_toGtHN6Z7akcX82hGxvtaFP-2gHbWVrfLG15la32zvFLxNGBCPBqyVESMk4gCDyRlkie8JgijgkWYh6GkESkJSDhOQMQBSWUsAiFEzGuYYkELaPHXexQrGat6tdk6PFDfxWo9VSd7xz-HATAQ-gUjBWXk
ClassificationCodes S114%S813.1
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16768/j.issn.1004-874X.2023.11.011
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Application Effect Analysis of Single-step Genomic Selection in Multi-population of Yorkshire Pig
EndPage 122
ExternalDocumentID gdnykx202311012
GrantInformation_xml – fundername: (广东省乡村振兴战略专项资金种业振兴项目); (国家生猪产业技术体系项目)
  funderid: (广东省乡村振兴战略专项资金种业振兴项目); (国家生猪产业技术体系项目)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
GROUPED_DOAJ
PSX
TCJ
TGD
U1G
U5N
ID FETCH-LOGICAL-s1022-384de947293176f34f7b7ce243e490788f3925e1b70b1ea62dfae6eeea7c030e3
ISSN 1004-874X
IngestDate Thu May 29 03:56:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords genomic selection
connectedness rating
一步法GBLUP(ssGBLUP)
大白猪
growth trait
heritability
基因组选择
遗传力
生长性状
场间关联率
Yorkshire
合并群体
single-step GBLUP(ssGLUP)
combined populations
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1022-384de947293176f34f7b7ce243e490788f3925e1b70b1ea62dfae6eeea7c030e3
PageCount 10
ParticipantIDs wanfang_journals_gdnykx202311012
PublicationCentury 2000
PublicationDate 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle 广东农业科学
PublicationTitle_FL Guangdong Agricultural Sciences
PublicationYear 2023
Publisher 广东省农业技术推广中心,广东 广州 510520
华南农业大学动物科学学院,广东 广州 510642%广东艾佩克科技有限公司,广东 广州 510470%广东省农业技术推广中心,广东 广州 510520%华南农业大学动物科学学院,广东 广州 510642
Publisher_xml – name: 华南农业大学动物科学学院,广东 广州 510642%广东艾佩克科技有限公司,广东 广州 510470%广东省农业技术推广中心,广东 广州 510520%华南农业大学动物科学学院,广东 广州 510642
– name: 广东省农业技术推广中心,广东 广州 510520
SSID ssib051371967
ssib001101201
ssj0000993252
Score 2.3334653
Snippet S114%S813.1; [目的]探究在拥有大量无基因型参考群的群体中,基因组选择(GS)方法与传统BLUP方法预测准确性的差异.同时,对比联合评估中GBLUP和一步法GBLUP的应用效果,为联合...
SourceID wanfang
SourceType Aggregation Database
StartPage 113
Title 大白猪多群体一步法基因组选择的应用效果分析
URI https://d.wanfangdata.com.cn/periodical/gdnykx202311012
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1004-874X
  databaseCode: DOA
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0000993252
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  issn: 1004-874X
  databaseCode: ABDBF
  dateStart: 20220901
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0000993252
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA9tBfEiiorf9GBOZdeZSTJJTpJtZymCnlrorczMJhWEFdotaE89FKnoQbA9WKV6qPgBnrxIpf413V38L3wvM7ud2uLXZXj78kvee3k7815C3gwhNyAIZyGsfWoyE6zGYxfUdEsGtdDlLk5TG2iLtcN37sbTs_z2nJgbGd2unFpa7mT1fOXYupL_8SrwwK9YJfsPnh0OCgygwb9wBQ_D9a98TBNBDadG0kRSrWljCgk1SY0pm7RBTiNBOuEI0MwTCo84JDE1U9QIJBqMaoG9dJM2fHfdoCbw3RtUQXeNXZRGsIIm7YUa3ySwi-aeA_ooxMBoqiASqicRAz9VPOAE1bTYjwD6N0vdSnzsiYLjDQFLdehNA7WHe4oeC4zItyRUSa8sYg8gemAGTFAT4ActCvuAiGIUlSBWR1SZA4j0s8K8moFXAXRhA0i5aVJUNPs_-HH2SLyq8DjDYEJN6Q_gm6bnJH4eD48DZiMH9GdwbxyVMlFhAQEikwnMbaOgEnzwUJCSxYnVQXQSQfUuDCuxJiyKeMu0JSzKu49ExBjWkz4kooj6UEQdZ6WO768txzz80vGFVvvR_YeICfEFcKPkRCQhk6tsWfh0G9uCYXwQIZPwQJfDPU5YfbBIFAcOSrknCR1odfN3OvkaurZL2wuVdG_mDDldrtPGTXHTnSUjK_fOkVvdnff9l3v9Z5-6O1v97zv7ey_2v672Pr_rfdnsvtntvnrb_7b2Y_VJ7-nH_tZad3ejv_Ght7ne237dXX_c235-nsw2k5nJ6Vr5BZLaUujLXBRvWc1hAQppduwYdzKTuY04s1xDcq0cLC-EDTMZZKFN46jlUhtba1OZQ_S07AIZaz9o24tk3LVcLrVgqbCOqzRWgeVcCe1y5ngryC-R8dLg-fIJszT_ixcu_xlyhZxCutgjvErGOovL9hpkzZ3sunfdT3IikYo
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%A4%A7%E7%99%BD%E7%8C%AA%E5%A4%9A%E7%BE%A4%E4%BD%93%E4%B8%80%E6%AD%A5%E6%B3%95%E5%9F%BA%E5%9B%A0%E7%BB%84%E9%80%89%E6%8B%A9%E7%9A%84%E5%BA%94%E7%94%A8%E6%95%88%E6%9E%9C%E5%88%86%E6%9E%90&rft.jtitle=%E5%B9%BF%E4%B8%9C%E5%86%9C%E4%B8%9A%E7%A7%91%E5%AD%A6&rft.au=%E5%8D%A2%E5%AE%87%E9%87%91&rft.au=%E9%BB%84%E7%8F%8D&rft.au=%E8%AE%B8%E5%8D%8E%E9%92%8A&rft.au=%E7%9F%B3%E5%B0%91%E7%A3%8A&rft.date=2023&rft.pub=%E5%B9%BF%E4%B8%9C%E7%9C%81%E5%86%9C%E4%B8%9A%E6%8A%80%E6%9C%AF%E6%8E%A8%E5%B9%BF%E4%B8%AD%E5%BF%83%2C%E5%B9%BF%E4%B8%9C+%E5%B9%BF%E5%B7%9E+510520&rft.issn=1004-874X&rft.volume=50&rft.issue=11&rft.spage=113&rft.epage=122&rft_id=info:doi/10.16768%2Fj.issn.1004-874X.2023.11.011&rft.externalDocID=gdnykx202311012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgdnykx%2Fgdnykx.jpg