基于文本挖掘的跑鞋用户评价及情感分析

TS101.91; 为了挖掘消费者在线购买跑鞋时的关注信息,文章用大数据分析视角,以"京东商城"为例按照销量排序分析了前600款跑鞋品牌定位、价格分布、优惠信息、标签占比,使用LDA模型对10万条跑鞋在线评论进行文本挖掘,对商品评论数据进行词频共现分析、主题聚类与情感分析,从品牌、技术和售后服务的维度分析了问题的原因并提出相关建议.研究表明:国产品牌跑鞋在各价位段布局完整,销量高的跑鞋多使用满减和商品券,自营和优惠券标签对跑鞋购买具较为显著的促进作用;消费者购买跑鞋时主要关注外观细节、功能属性、性价比、穿着感受、服务优惠等方面....

Full description

Saved in:
Bibliographic Details
Published in丝绸 Vol. 61; no. 6; pp. 108 - 119
Main Authors 罗向东, 强威, 张希莹, 吴梦
Format Journal Article
LanguageChinese
Published 陕西科技大学鞋服大数据与标准化研究中心,西安 710021 2024
陕西科技大学设计与艺术学院,西安 710021%陕西科技大学设计与艺术学院,西安 710021
Subjects
Online AccessGet full text
ISSN1001-7003
DOI10.3969/j.issn.1001-7003.2024.06.012

Cover

Abstract TS101.91; 为了挖掘消费者在线购买跑鞋时的关注信息,文章用大数据分析视角,以"京东商城"为例按照销量排序分析了前600款跑鞋品牌定位、价格分布、优惠信息、标签占比,使用LDA模型对10万条跑鞋在线评论进行文本挖掘,对商品评论数据进行词频共现分析、主题聚类与情感分析,从品牌、技术和售后服务的维度分析了问题的原因并提出相关建议.研究表明:国产品牌跑鞋在各价位段布局完整,销量高的跑鞋多使用满减和商品券,自营和优惠券标签对跑鞋购买具较为显著的促进作用;消费者购买跑鞋时主要关注外观细节、功能属性、性价比、穿着感受、服务优惠等方面.
AbstractList TS101.91; 为了挖掘消费者在线购买跑鞋时的关注信息,文章用大数据分析视角,以"京东商城"为例按照销量排序分析了前600款跑鞋品牌定位、价格分布、优惠信息、标签占比,使用LDA模型对10万条跑鞋在线评论进行文本挖掘,对商品评论数据进行词频共现分析、主题聚类与情感分析,从品牌、技术和售后服务的维度分析了问题的原因并提出相关建议.研究表明:国产品牌跑鞋在各价位段布局完整,销量高的跑鞋多使用满减和商品券,自营和优惠券标签对跑鞋购买具较为显著的促进作用;消费者购买跑鞋时主要关注外观细节、功能属性、性价比、穿着感受、服务优惠等方面.
Abstract_FL With the consumption pattern of online shopping becoming increasingly common,the way for consumers to obtain product evaluation information has changed from word of mouth in the past to online reviews.More than 70%of consumers refer to e-commerce platform product evaluation information when shopping online,and more than 90%of enterprises believe that reviews will play a decisive role in future consumer behavior.Unlike subjective survey data,product online reviews are not subject to the subjective judgment of researchers during the survey process,and can reflect the real user experience and emotional tendency.Therefore,it is important to study the ways in which user evaluation big data drive product design research and development,such as accelerating the shift in product design,promoting marketing,and improving user satisfaction.Current research on running shoes mainly focuses on product function development,shoe last redesign and market demand classification.At present,no scholars have explored the factors that consumers pay attention to when buying and using running shoes from the perspective of e-commerce big data.Understanding the consumption trend and consumer preference of running shoes is of great significance for industrial development and marketing strategy formulation. To mine consumers'attention information in their buying running shoes online,firstly,Requests library and Pymysql library in Python 3.11 were used to collect the sales feature data of top 600 running shoes sold on Jingdong Mall and 100,000 user comments.Secondly,text preprocessing of online review text was performed by using the precise mode in the Chinese word segmentation system of Jieba Database.Thirdly,Origin 2021 was used to analyze the basic information of the sales characteristics of running shoes.Fourthly,LDA model and Gibbs sampling were used to cluster review texts to explore the distribution of product feature words under different themes.Finally,SnowNLP was used to score the text for emotion,so as to obtain positive and negative labels,and topic analysis was performed based on emotion labels to compare the difference in topic distribution of positive and negative comments.From the perspective of big data analysis,this paper used LDA model to conduct text mining on 100,000 online reviews of running shoes,conduct word frequency co-occurrence analysis,topic clustering and sentiment analysis on product review data,analyze the causes of problems from the dimensions of brand,technology and after-sales service and put forward relevant suggestions.Domestic running shoes have a complete product layout from the entry market to the high-end market,but due to the world brand effect,technology accumulation and user reputation,there is still a long way to go compared with the top brands in sales and focusing on the mid-to-high-end market.Most of the running shoes with top sales ranking participate in discount and coupon activities,and the proportion of self-operated,store sales and quality certification labels is higher than the overall level,while self-operated and coupon labels have a significant role in promoting the purchase of running shoes.When consumers buy running shoes online,they mainly pay attention to the appearance details,functional attributes,cost performance,wearing feelings,service concessions and so on.A small number of consumers have a poor attitude towards the wearing experience,product quality and service promotion of running shoes. In the future,in-depth research can be carried out according to various characteristics of consumers.On the basis of collecting big data of user comments,it is necessary to further mine user information such as age,region and occupation,so that the comment topic can be mapped to specific user groups,which is helpful to meet the targeted research and development of specific consumer groups and the implementation of precision marketing.In addition,to make the results more universally valuable,it is necessary to continue to increase the amount of data in the future to make the model better understand the various topics,domains and contexts,so as to improve the reliability and validity of the results.
Author 吴梦
罗向东
强威
张希莹
AuthorAffiliation 陕西科技大学鞋服大数据与标准化研究中心,西安 710021;陕西科技大学设计与艺术学院,西安 710021%陕西科技大学设计与艺术学院,西安 710021
AuthorAffiliation_xml – name: 陕西科技大学鞋服大数据与标准化研究中心,西安 710021;陕西科技大学设计与艺术学院,西安 710021%陕西科技大学设计与艺术学院,西安 710021
Author_FL QIANG Wei
WU Meng
LUO Xiangdong
ZHANG Xiying
Author_FL_xml – sequence: 1
  fullname: LUO Xiangdong
– sequence: 2
  fullname: QIANG Wei
– sequence: 3
  fullname: ZHANG Xiying
– sequence: 4
  fullname: WU Meng
Author_xml – sequence: 1
  fullname: 罗向东
– sequence: 2
  fullname: 强威
– sequence: 3
  fullname: 张希莹
– sequence: 4
  fullname: 吴梦
BookMark eNo9j8tKw0AYhWdRwVr7FoKrjP_MJH8ySyneoOBG12Vy0xaZgEPxAYxaVFoFKSLSbl0ILgP1dZppfQsjiqsDZ3HO962Rms50QsgGAyokyq0e7RqjKQNgjg8gKAfuUkAKjNdI_b9fJU1juiEAcB9cj9cJltPZfDa04xv7-m7vx3b4vHjJl8Xj1-Ru8fRmB8XyI59_FuXo1l5e2XxaDq7t5GGdrKTqzCTNv2yQ492do9a-0z7cO2httx3DgHNHeG4gIfRVEAcRC0SEMvUx9aMEK-6KAj0lGBduoPwYOaqQuQpjj3OUXohSNMjm7-6F0qnSJ51e1j_X1WPHdKPTrP_jCVhZim8Ev1zN
ClassificationCodes TS101.91
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-7003.2024.06.012
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL User evaluation and sentiment analysis of running shoes based on text mining
EndPage 119
ExternalDocumentID sichou202406012
GrantInformation_xml – fundername: (教育部人文社会科学研究项目); (陕西省重点研发计划项目)
  funderid: (教育部人文社会科学研究项目); (陕西省重点研发计划项目)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CDYEO
PSX
TCJ
ID FETCH-LOGICAL-s1022-354890b7a8d8c183c69f76f7ce639600265a312348a7d626ab14a6d522695b693
ISSN 1001-7003
IngestDate Thu May 29 03:56:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 情感分析
文本挖掘
running shoes
sentiment analysis
LDA model
text mining
跑鞋
cluster analysis
聚类分析
LDA模型
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1022-354890b7a8d8c183c69f76f7ce639600265a312348a7d626ab14a6d522695b693
PageCount 12
ParticipantIDs wanfang_journals_sichou202406012
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 丝绸
PublicationTitle_FL Silk
PublicationYear 2024
Publisher 陕西科技大学鞋服大数据与标准化研究中心,西安 710021
陕西科技大学设计与艺术学院,西安 710021%陕西科技大学设计与艺术学院,西安 710021
Publisher_xml – name: 陕西科技大学鞋服大数据与标准化研究中心,西安 710021
– name: 陕西科技大学设计与艺术学院,西安 710021%陕西科技大学设计与艺术学院,西安 710021
SSID ssib000270452
ssib036435017
ssib001214920
ssib037067933
ssib006564764
ssib001104719
ssib051368098
Score 2.369578
Snippet TS101.91; 为了挖掘消费者在线购买跑鞋时的关注信息,文章用大数据分析视角,以"京东商城"为例按照销量排序分析了前600款跑鞋品牌定位、价格分布、优惠信息、标签占比,使用LDA...
SourceID wanfang
SourceType Aggregation Database
StartPage 108
Title 基于文本挖掘的跑鞋用户评价及情感分析
URI https://d.wanfangdata.com.cn/periodical/sichou202406012
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1001-7003
  databaseCode: ABDBF
  dateStart: 20220101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib037067933
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsIkJiBdRVHyTQ_okG-fRz2PP7CxB0FMCuYV5mtMGzO4lV6PGB1FBgogkVw-Cx4X4O8kk_oVVPZPdThBfsDRFd011PXamqnq6egiZk3lQllzknTBnJZbkFB3FZdrJ4A-T6qIIUoa1ww8fiYUl9mCZL0-de-nsWhoOsvl845d1Jf9jVegDu2KV7D9YdkwUOgAG-0ILFob2r2xME051j0aGJgxbldBEUC0oZPgIxNTECKgYOxFIqFY0kVQDMqOJohHAPk001QlVkR1i1CiLbEcBx_QsMkwR2R5OFfQYixNSxS3AkBMcUlTZuYBg84nOk9jXUlBUd3EWJDXeRWs7ulRb2tqzHDW48QSF0yi2onLkT_lnRoxnAYXCAs8gaaRdFCAbMeTLBNQId7EjmCxzWkXAj1uxgVwPWTONjgTKrOw0hmEnAl0g5qjPKl11HRyB1CLPXg7ISStZYypgWjUKlVZr_MRUEofAEghoGon2KmMpA1eg9yB2mORIWel7eIpSUwveehrcyyY9L3RdkfCdW871K76nnBDFb7zMWe8XaqGt98MJ5scTzKMi7SG17Yb10-eLw8NgdW2IOHg0D0QzMwEubU2TGRN1o577ihqP35_E2njIx6mzACHZdnIPSBSYnOTiIYS-3Jvk0qHEJcxJrsH9UChPN6WrLefnyVwr1v3fCWXr7fpV2n_shIaLl8jFNqebNc0NeplMbaxeIeJwb_9gf7veeVF__lq_2am3Px592jwevf-x-_row5d6a3T8bfPg--jw7av66bN6c-9w63m9--4qWeoli_FCp_1ISWfdbyphmNJeJlNVqBz8Yy50JUUl8xJif3zpLXgaQnjIVCoLEYg081kqCkx7NM-EDq-R6f5av7xOZqtAM10VYVHpkvlVmLE8D6pMQRIFiivkDTLbyrnSPoTWV85Y7-afUW6RCwg3y4i3yfTgybC8A4H1ILvbmvwnTKSTCg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%96%87%E6%9C%AC%E6%8C%96%E6%8E%98%E7%9A%84%E8%B7%91%E9%9E%8B%E7%94%A8%E6%88%B7%E8%AF%84%E4%BB%B7%E5%8F%8A%E6%83%85%E6%84%9F%E5%88%86%E6%9E%90&rft.jtitle=%E4%B8%9D%E7%BB%B8&rft.au=%E7%BD%97%E5%90%91%E4%B8%9C&rft.au=%E5%BC%BA%E5%A8%81&rft.au=%E5%BC%A0%E5%B8%8C%E8%8E%B9&rft.au=%E5%90%B4%E6%A2%A6&rft.date=2024&rft.pub=%E9%99%95%E8%A5%BF%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E9%9E%8B%E6%9C%8D%E5%A4%A7%E6%95%B0%E6%8D%AE%E4%B8%8E%E6%A0%87%E5%87%86%E5%8C%96%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%2C%E8%A5%BF%E5%AE%89+710021&rft.issn=1001-7003&rft.volume=61&rft.issue=6&rft.spage=108&rft.epage=119&rft_id=info:doi/10.3969%2Fj.issn.1001-7003.2024.06.012&rft.externalDocID=sichou202406012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsichou%2Fsichou.jpg