基于LiDAR数据的汕尾火山嶂地质灾害风险评价

P642.21; 机载激光雷达(LiDAR,light detection and ranging)数据能有效去除植被,获取真实的地表形态,从而为植被覆盖区的地质灾害风险评价提供新的方法和手段.汕尾火山嶂山体陡峻、植被茂密,是滑坡、崩塌和泥石流的易发地,本文首先采用高分辨率LiDAR数据生成高精度DEM数据以及坡度、坡向、曲率、起伏度、粗糙度和山体阴影等地形因子,综合高分一号遥感影像进行滑坡/崩塌解译共获得滑坡/崩塌44处;然后基于变维分形模型确定各解译因子对滑坡/崩塌形成的权重后计算获得每个解译滑坡/崩塌的确认概率,剔除概率较低的滑坡/崩塌3处;最后根据沟谷特征将火山嶂划分为6个子区,基于各...

Full description

Saved in:
Bibliographic Details
Published in中山大学学报(自然科学版)(中英文) Vol. 63; no. 1; pp. 10 - 23
Main Authors 甄俊伟, 黄智炜, 章桂芳, 曾探, 王同皓
Format Journal Article
LanguageChinese
Published 南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082 2024
广东省地质局第七地质大队,广东 惠州 516000%中山大学地球科学与工程学院,广东 珠海 519082%中山大学地球科学与工程学院,广东 珠海 519082
广东省地质过程与矿产资源探查实验室,广东 珠海 519082
Subjects
Online AccessGet full text
ISSN2097-0137
DOI10.13471/j.cnki.acta.snus.2023D032

Cover

Abstract P642.21; 机载激光雷达(LiDAR,light detection and ranging)数据能有效去除植被,获取真实的地表形态,从而为植被覆盖区的地质灾害风险评价提供新的方法和手段.汕尾火山嶂山体陡峻、植被茂密,是滑坡、崩塌和泥石流的易发地,本文首先采用高分辨率LiDAR数据生成高精度DEM数据以及坡度、坡向、曲率、起伏度、粗糙度和山体阴影等地形因子,综合高分一号遥感影像进行滑坡/崩塌解译共获得滑坡/崩塌44处;然后基于变维分形模型确定各解译因子对滑坡/崩塌形成的权重后计算获得每个解译滑坡/崩塌的确认概率,剔除概率较低的滑坡/崩塌3处;最后根据沟谷特征将火山嶂划分为6个子区,基于各个子区的地形特征、滑坡/崩塌密度和体量以及人类活动分布进行地质灾害风险评价.结果表明基于LiDAR数据生成的高精度地形因子可以有效地去除植被影响,是植被覆盖区地质灾害解译的有效手段.
AbstractList P642.21; 机载激光雷达(LiDAR,light detection and ranging)数据能有效去除植被,获取真实的地表形态,从而为植被覆盖区的地质灾害风险评价提供新的方法和手段.汕尾火山嶂山体陡峻、植被茂密,是滑坡、崩塌和泥石流的易发地,本文首先采用高分辨率LiDAR数据生成高精度DEM数据以及坡度、坡向、曲率、起伏度、粗糙度和山体阴影等地形因子,综合高分一号遥感影像进行滑坡/崩塌解译共获得滑坡/崩塌44处;然后基于变维分形模型确定各解译因子对滑坡/崩塌形成的权重后计算获得每个解译滑坡/崩塌的确认概率,剔除概率较低的滑坡/崩塌3处;最后根据沟谷特征将火山嶂划分为6个子区,基于各个子区的地形特征、滑坡/崩塌密度和体量以及人类活动分布进行地质灾害风险评价.结果表明基于LiDAR数据生成的高精度地形因子可以有效地去除植被影响,是植被覆盖区地质灾害解译的有效手段.
Abstract_FL Airborne LiDAR(light detection and ranging)data are effective for geological hazard risk assessment in vegetation-covered areas because vegetation information can be removed and thus pro-vide true surface morphology.Huoshanzhang in Shanwei,Guangdong Province is a steep and densely vegetated area that is prone to landslides,collapses,and mudslides.This study adopted high-resolution LiDAR data to generate high-precision DEM data and extract terrain factors such as slope,aspect,cur-vature,undulation,roughness,and mountain shadows,combined with remote sensing images of GF-1 satellite,identified a total of 44 landslides/collapses.Among them,three low-probability landslides/collapses were removed based on the variable dimensional and fractal model,the determined weight of each terrain factor,and the confirmed probability of each interpreted landslide/collapse.The area was divided into 6 sub-regions according to the characteristics of the valleys and the geological hazard risk assessment of each sub-region was conducted based on the terrain characteristics,landslide/collapse density and volume,and human activities.The results indicate that high-precision terrain factors gener-ated from LiDAR data of vegetation impacts eliminated are an effective source for geological hazard in-terpretation in vegetation-covered areas.
Author 甄俊伟
曾探
章桂芳
黄智炜
王同皓
AuthorAffiliation 广东省地质局第七地质大队,广东 惠州 516000%中山大学地球科学与工程学院,广东 珠海 519082%中山大学地球科学与工程学院,广东 珠海 519082;广东省地质过程与矿产资源探查实验室,广东 珠海 519082;南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082
AuthorAffiliation_xml – name: 广东省地质局第七地质大队,广东 惠州 516000%中山大学地球科学与工程学院,广东 珠海 519082%中山大学地球科学与工程学院,广东 珠海 519082;广东省地质过程与矿产资源探查实验室,广东 珠海 519082;南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082
Author_FL WANG Tonghao
ZHANG Guifang
HUANG Zhiwei
ZHEN Junwei
ZENG Tan
Author_FL_xml – sequence: 1
  fullname: ZHEN Junwei
– sequence: 2
  fullname: HUANG Zhiwei
– sequence: 3
  fullname: ZHANG Guifang
– sequence: 4
  fullname: ZENG Tan
– sequence: 5
  fullname: WANG Tonghao
Author_xml – sequence: 1
  fullname: 甄俊伟
– sequence: 2
  fullname: 黄智炜
– sequence: 3
  fullname: 章桂芳
– sequence: 4
  fullname: 曾探
– sequence: 5
  fullname: 王同皓
BookMark eNotj09LAkEcQOdgkJlfokun3X7zm93Zlk6i_QMhiDrL7OxMaDFCkyTdDK9581AEHboUga0UBQZ-GndXv0VCnd7tPd4aKZi2UYRsUHAp8wK61XKlOW-6Ql4J15qOdRGQ1YBhgRQRwsAByoJVUra2GYFPGQ9ZGBbJTvo0mU0G9WatcpwNk-xulD_0s_EwTaZ57y0dj9Ov2_QxmX--5L1pOvpYPA8W96_z9_7s53udrGhxYVX5nyVyurd7Uj1w6kf7h9VK3bEUEB30tQQeAcQhjzxfRIoKwBhQcgQRa4wUoPY9SpXgXIJC6YOCbe0BRy0DViKbf95rYbQwZ41Wu3NplsXGjY273Wh56gGF5e8vfsti_w
ClassificationCodes P642.21
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13471/j.cnki.acta.snus.2023D032
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Geological disaster risk assessment of Huoshanzhang in Shanwei of Guangdong based on LiDAR data
EndPage 23
ExternalDocumentID zsdxxb202401002
GrantInformation_xml – fundername: (中央财政地质灾害防治专项); (广东国家公园建设专项); (南方海洋科学与工程广东省实验室; (广州市科技计划项目); (广东省基础与应用基础研究基金)
  funderid: (中央财政地质灾害防治专项); (广东国家公园建设专项); (珠海)创新团队建设项目); (广州市科技计划项目); (广东省基础与应用基础研究基金)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
AMVHM
PSX
TCJ
ID FETCH-LOGICAL-s1022-25fc06b00d96b45abe1a02d02c620adf2be02f5411ea66c0e2c50e08f4062fc73
ISSN 2097-0137
IngestDate Thu May 29 04:04:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords risk assessment
geological disaster
风险评价
LiDAR
地质灾害
火山嶂
Huoshanzhang
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1022-25fc06b00d96b45abe1a02d02c620adf2be02f5411ea66c0e2c50e08f4062fc73
PageCount 14
ParticipantIDs wanfang_journals_zsdxxb202401002
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 中山大学学报(自然科学版)(中英文)
PublicationTitle_FL Acta Scientiarum Naturalium Universitatis Sunyatseni
PublicationYear 2024
Publisher 南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082
广东省地质局第七地质大队,广东 惠州 516000%中山大学地球科学与工程学院,广东 珠海 519082%中山大学地球科学与工程学院,广东 珠海 519082
广东省地质过程与矿产资源探查实验室,广东 珠海 519082
Publisher_xml – name: 广东省地质局第七地质大队,广东 惠州 516000%中山大学地球科学与工程学院,广东 珠海 519082%中山大学地球科学与工程学院,广东 珠海 519082
– name: 南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082
– name: 广东省地质过程与矿产资源探查实验室,广东 珠海 519082
SSID ssib051369399
ssib050592024
ssib059270963
ssib051810527
ssib050169509
Score 2.369578
Snippet P642.21; 机载激光雷达(LiDAR,light detection and ranging)数据能有效去除植被,获取真实的地表形态,从而为植被覆盖区的地质灾害风险评价提供新的方法和手段.汕尾火山嶂山...
SourceID wanfang
SourceType Aggregation Database
StartPage 10
Title 基于LiDAR数据的汕尾火山嶂地质灾害风险评价
URI https://d.wanfangdata.com.cn/periodical/zsdxxb202401002
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  issn: 2097-0137
  databaseCode: AMVHM
  dateStart: 20200901
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  omitProxy: false
  ssIdentifier: ssib059270963
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB7C5uJFFBXf5GCfwsaenu6Zbjx1784SxHiQRHILs_PQIKzg7kLILZKrueWgCB68KEJMUBQi5Ndk8_gXVnXP7k5MxAcsQ213VXVVfbPdNcV0r-fdyQtYVaOEw-zXlnWeFKKeRHlaz1I_TPIiygK7UXjuYTi7wO8visWJ2nTlraV-rz2Trp65r-R_UIU2wBV3yf4DsiOl0AA04AtXQBiuf4UxiQVRLWI0iTleZfxguakfkTgkShBDkZBNomMSR0RBP8cW42NvbBmM7ZI-0ca2-PhBAgSZVd-weiQxnGhZMqOUQLUmILEiOoCRkVBAK2TWLTsWGGWIiaoJsG0EhuaJ4TQojywB1oYVAszQRIO14GWDSInKZUS0tpZwtBMIkFV-RQq6lGV2UqoiPhod9Bg7OsQqRJ1D5uEtaGPGh3600BAkGhDxMYtCD11YwXnjzGIQtaoWiK22WGjfRlWiLhOMWUDY2KCGGEjNqqUYNi7CoocAp4pKo42ycEIcbQsgBC6dEQ7rs7SYASdGM0IspYNcoXOOB8BGpxuIsQNYWVwh3LJRtgBUzN0HrdIrZwBT-Gs9rXH6NO805PNUVurNjOJhvb47l2e4YJYrUnVicKtf-YKyy6PcNvJTK3QA2ZBdotPOs2WYM3rJTLfTx4PzWdCkZa375Anoq91sZaWNAae-PTh2kmHxreZN6rnHs6PinMCDhcT4NDrI7RUKjb77QagqT98Cklsq2Cj7Bu4IHujxnZSR2-UxxWj03d-abPf7dYqk86SSms5f8M6Xz5RT2k0QF72J1aeXvHuDd7v7uxt2QjjY3D54tXX4Zv1gZ3OwvXe49mmwszP49nLwdvvo64fDtb3B1pfj9xvHrz8efV7f__H9srfQiucbs_Xyn1LqXazY1JkoUhrCCpqpsM1F0s79hLKMsjRkNMkK1s4pKwT3_TwJw5TmLBU0p7KAdJ4VaRRc8Wqd5538qjcVBIqDMk4TkfLQLxJegJYiAz_zpEiza95U6exSORN2l34B6PqfWW5455B2tcybXq33op_fguy-175dovoTr-i3YA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ELiDAR%E6%95%B0%E6%8D%AE%E7%9A%84%E6%B1%95%E5%B0%BE%E7%81%AB%E5%B1%B1%E5%B6%82%E5%9C%B0%E8%B4%A8%E7%81%BE%E5%AE%B3%E9%A3%8E%E9%99%A9%E8%AF%84%E4%BB%B7&rft.jtitle=%E4%B8%AD%E5%B1%B1%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89%EF%BC%88%E4%B8%AD%E8%8B%B1%E6%96%87%EF%BC%89&rft.au=%E7%94%84%E4%BF%8A%E4%BC%9F&rft.au=%E9%BB%84%E6%99%BA%E7%82%9C&rft.au=%E7%AB%A0%E6%A1%82%E8%8A%B3&rft.au=%E6%9B%BE%E6%8E%A2&rft.date=2024&rft.pub=%E5%8D%97%E6%96%B9%E6%B5%B7%E6%B4%8B%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%B9%BF%E4%B8%9C%E7%9C%81%E5%AE%9E%E9%AA%8C%E5%AE%A4%28%E7%8F%A0%E6%B5%B7%29%2C+%E5%B9%BF%E4%B8%9C+%E7%8F%A0%E6%B5%B7+519082&rft.issn=2097-0137&rft.volume=63&rft.issue=1&rft.spage=10&rft.epage=23&rft_id=info:doi/10.13471%2Fj.cnki.acta.snus.2023D032&rft.externalDocID=zsdxxb202401002
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzsdxxb%2Fzsdxxb.jpg