基于快速神经网络架构搜索的鲁棒图像水印网络算法

TP391; 为解决深度学习在图像水印算法中计算量大且模型冗余的问题,提高图像水印算法在抵抗噪声、旋转和剪裁等攻击时的鲁棒性,提出基于快速神经网络架构搜索(neural architecture search,NAS)的鲁棒图像水印网络算法.通过多项式分布学习快速神经网络架构搜索算法,在预设的搜索空间中搜索最优网络结构,进行图像水印的高效嵌入与鲁棒提取.首先,将子网络中线性连接的全卷积层设置为独立的神经单元结构,并参数化表示结构单元内节点的连接,预先设定结构单元内每个神经元操作的搜索空间;其次,在完成一个批次的数据集训练后,依据神经元操作中的被采样次数和平均损失函数值动态更新概率;最后,重新训...

Full description

Saved in:
Bibliographic Details
Published in浙江大学学报(理学版) Vol. 48; no. 3; pp. 261 - 269
Main Authors 王小超, 张雷, 余元强, 胡坤, 胡建平
Format Journal Article
LanguageChinese
Published 天津工业大学 数学科学学院,天津 300387%天津大学 智能与计算学部,天津 300350%中国科学院大学,北京 100049%东北电力大学 理学院,吉林吉林 132012 01.05.2021
Subjects
Online AccessGet full text
ISSN1008-9497
DOI10.3785/j.issn.1008-9497.2021.03.001

Cover

More Information
Summary:TP391; 为解决深度学习在图像水印算法中计算量大且模型冗余的问题,提高图像水印算法在抵抗噪声、旋转和剪裁等攻击时的鲁棒性,提出基于快速神经网络架构搜索(neural architecture search,NAS)的鲁棒图像水印网络算法.通过多项式分布学习快速神经网络架构搜索算法,在预设的搜索空间中搜索最优网络结构,进行图像水印的高效嵌入与鲁棒提取.首先,将子网络中线性连接的全卷积层设置为独立的神经单元结构,并参数化表示结构单元内节点的连接,预先设定结构单元内每个神经元操作的搜索空间;其次,在完成一个批次的数据集训练后,依据神经元操作中的被采样次数和平均损失函数值动态更新概率;最后,重新训练搜索完成的网络.水印网络模型的参数量较原始网络模型缩减了92%以上,大大缩短了模型训练时间.由于搜索得到的网络结构更为紧凑,本文算法具有较高的时间性能和较好的实验效果,在隐藏图像时,对空域信息的依赖比原始网络更少.对改进前后的2个网络进行了大量鲁棒性实验,对比发现,本文算法在CIFAR-10数据集上对抵抗椒盐噪声和旋转、移除像素行(列)等攻击优势显著;在ImageNet数据集上对抵抗椒盐高斯噪声、旋转、中值滤波、高斯滤波、JPEG压缩、裁剪等攻击优势显著,特别是对随机移除行(列)和椒盐噪声有较强的鲁棒性.
ISSN:1008-9497
DOI:10.3785/j.issn.1008-9497.2021.03.001