基于时空双稀疏表示的成人ADHD脑网络检测与分析
注意力缺陷多动障碍(Attention deficit hyperactivity disorder,ADHD)主要表现为注意力分散、多动和冲动,是一种常见的精神障碍疾病.作为一种流行的脑功能成像技术,静息态功能核磁共振成像(Resting-state functional magnetic resonance imaging,rsfMRI)常应用于探索ADHD的神经机制.然而,由于rsfMRI数据的高维和少样本特性,采用传统的独立成分分析方法从rsfMRI数据中获得脑网络后,大多用基于体素级的方法进行推断,这难以检测出可靠的、与ADHD相关的脑网络.针对上述问题,本文提出了一种新颖的基于时空...
Saved in:
Published in | 自动化学报 Vol. 45; no. 10; pp. 1903 - 1914 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
湖南大学电气与信息工程学院 长沙410082
01.10.2019
湖南工程学院电气信息工程学院 湘潭411101%湖南大学电气与信息工程学院 长沙410082%中南大学湘雅二医院精神卫生研究所 长沙410011 |
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 |
DOI | 10.16383/j.aas.c170680 |
Cover
Summary: | 注意力缺陷多动障碍(Attention deficit hyperactivity disorder,ADHD)主要表现为注意力分散、多动和冲动,是一种常见的精神障碍疾病.作为一种流行的脑功能成像技术,静息态功能核磁共振成像(Resting-state functional magnetic resonance imaging,rsfMRI)常应用于探索ADHD的神经机制.然而,由于rsfMRI数据的高维和少样本特性,采用传统的独立成分分析方法从rsfMRI数据中获得脑网络后,大多用基于体素级的方法进行推断,这难以检测出可靠的、与ADHD相关的脑网络.针对上述问题,本文提出了一种新颖的基于时空双稀疏表示(Dual temporal and spatial sparse representation,DTSSR)的方法和指标,以22名成人ADHD患者为研究对象,从大尺度脑网络级的角度检测出与ADHD相关的脑网络.首先采用DTSSR从ADHD的rsfMRI数据中提取出组脑网络及相应的耦合参数;然后将耦合参数均值池化作为网络的活跃度指标;最后,将活跃度指标与ADHD的量表分进行Spearman相关性分析,检测出与ADHD相关的脑网络.实验结果表明,背侧注意网络、执行控制网络的活跃度与ADHD量表分具有显著相关性.该结果在脑科学角度有合理的解释,且在不同字典尺寸下具有较高稳定性.本文所提方法,为探讨ADHD的潜在神经机制提供了一种新思路. |
---|---|
ISSN: | 0254-4156 |
DOI: | 10.16383/j.aas.c170680 |