基于条件约束的胶囊生成对抗网络
生成式对抗网络(Generative adversarial networks,GAN)是主要的以无监督方式学习深度生成模型的方法之一.基于可微生成器网络的生成式建模方法,是目前最热门的研究领域,但由于真实样本分布的复杂性,导致GAN生成模型在训练过程稳定性、生成质量等方面均存在不少问题.在生成式建模领域,对网络结构的探索是重要的一个研究方向,本文利用胶囊神经网络(Capsule networks,CapsNets)重构生成对抗网络模型结构,在训练过程中使用了Wasserstein GAN(WGAN)中提出的基于Earth-mover距离的损失函数,并在此基础上加以条件约束来稳定模型生成过程,...
Saved in:
Published in | 自动化学报 Vol. 46; no. 1; pp. 94 - 107 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Chinese |
Published |
暨南大学智能科学与工程学院 珠海 519070
2020
暨南大学信息科学技术学院 广州 510632%暨南大学信息科学技术学院 广州 510632 |
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 |
DOI | 10.16383/j.aas.c180590 |
Cover
Summary: | 生成式对抗网络(Generative adversarial networks,GAN)是主要的以无监督方式学习深度生成模型的方法之一.基于可微生成器网络的生成式建模方法,是目前最热门的研究领域,但由于真实样本分布的复杂性,导致GAN生成模型在训练过程稳定性、生成质量等方面均存在不少问题.在生成式建模领域,对网络结构的探索是重要的一个研究方向,本文利用胶囊神经网络(Capsule networks,CapsNets)重构生成对抗网络模型结构,在训练过程中使用了Wasserstein GAN(WGAN)中提出的基于Earth-mover距离的损失函数,并在此基础上加以条件约束来稳定模型生成过程,从而建立带条件约束的胶囊生成对抗网络(Conditional-CapsuleGAN,C-CapsGAN).通过在MNIST和CIFAR-10数据集上的多组实验,结果表明将CapsNets应用到生成式建模领域是可行的,相较于现有类似模型,C-CapsGAN不仅能在图像生成任务中稳定生成高质量图像,同时还能更有效地抑制模式坍塌情况的发生. |
---|---|
ISSN: | 0254-4156 |
DOI: | 10.16383/j.aas.c180590 |