结构辨识和参数优化协同学习的概率TSK模糊系统

传统Takagi-Sugeno-Kang(TSK)模糊系统的结构辨识和参数优化往往分阶段进行,同时模糊规则数需要预先设定,因此TSK模糊系统的逼近性能和解释性往往不理想.针对此问题,提出了一种结构辨识和参数优化协同学习的概率TSK模糊系统(Probabilistic TSK fuzzy system,PTSK).首先,PTSK使用概率模型表示模糊回归系统,将结构辨识和参数优化作为一个整体来考虑.其次,PTSK不借助于专家经验,使用粒子滤波方法对规则数和前后件参数协同学习,得到系统全部参数的最优解.实验结果表明,PTSK具有良好的逼近性能,同时能获得较少的模糊规则数....

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 47; no. 2; pp. 349 - 362
Main Authors 顾晓清, 倪彤光, 张聪, 戴臣超, 王洪元
Format Journal Article
LanguageChinese
Published 常州大学信息科学与工程学院 常州213164 01.02.2021
Subjects
Online AccessGet full text
ISSN0254-4156
DOI10.16383/j.aas.c180298

Cover

More Information
Summary:传统Takagi-Sugeno-Kang(TSK)模糊系统的结构辨识和参数优化往往分阶段进行,同时模糊规则数需要预先设定,因此TSK模糊系统的逼近性能和解释性往往不理想.针对此问题,提出了一种结构辨识和参数优化协同学习的概率TSK模糊系统(Probabilistic TSK fuzzy system,PTSK).首先,PTSK使用概率模型表示模糊回归系统,将结构辨识和参数优化作为一个整体来考虑.其次,PTSK不借助于专家经验,使用粒子滤波方法对规则数和前后件参数协同学习,得到系统全部参数的最优解.实验结果表明,PTSK具有良好的逼近性能,同时能获得较少的模糊规则数.
ISSN:0254-4156
DOI:10.16383/j.aas.c180298