基于改进YOLO的双网络桥梁表观病害快速检测算法
桥梁表观病害检测是确保桥梁安全的关键步骤.然而,桥梁表观病害类型多样,不同病害间外观差异显著且病害之间可能发生重叠,现有算法无法实现快速且准确的桥梁多病害检测.针对这一问题,对YOLO(You only look once)进行了改进,提出了 YOLO-lump和YOLO-crack以提高网络检测多病害的能力,进而形成基于双网络的桥梁表观病害快速检测算法.一方面,YOLO-lump在较大的滑动窗口图像上实现块状病害的检测.在YOLO-lump中,提出了混合空洞金字塔模块,其结合了混合空洞卷积与空间金字塔池化,用于提取稀疏表达的多尺度特征,同时可以避免空洞卷积造成的局部信息丢失;另一方面,YOL...
Saved in:
| Published in | 自动化学报 Vol. 48; no. 4; pp. 1018 - 1032 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
湖南大学机器人视觉感知与控制技术国家工程研究中心 长沙410082%湖南桥康智能科技有限公司 长沙410021
01.04.2022
湖南大学电气与信息工程学院 长沙410082 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0254-4156 |
| DOI | 10.16383/j.aas.c210807 |
Cover
| Summary: | 桥梁表观病害检测是确保桥梁安全的关键步骤.然而,桥梁表观病害类型多样,不同病害间外观差异显著且病害之间可能发生重叠,现有算法无法实现快速且准确的桥梁多病害检测.针对这一问题,对YOLO(You only look once)进行了改进,提出了 YOLO-lump和YOLO-crack以提高网络检测多病害的能力,进而形成基于双网络的桥梁表观病害快速检测算法.一方面,YOLO-lump在较大的滑动窗口图像上实现块状病害的检测.在YOLO-lump中,提出了混合空洞金字塔模块,其结合了混合空洞卷积与空间金字塔池化,用于提取稀疏表达的多尺度特征,同时可以避免空洞卷积造成的局部信息丢失;另一方面,YOLO-crack在较小的滑动窗口图像上实现裂缝病害的检测.在YOLO-crack中,提出了下采样注意力模块,利用1x1卷积和3×3分组卷积分别解耦特征的通道相关性和空间相关性,可以增强裂缝在下采样阶段的前景响应,减少空间信息的损失.实验结果表明,该算法能够提高桥梁表观病害检测的精度,同时可实现病害的实时检测. |
|---|---|
| ISSN: | 0254-4156 |
| DOI: | 10.16383/j.aas.c210807 |