目标检测模型及其优化方法综述

近年来,基于卷积神经网络的目标检测研究发展十分迅速,各种检测模型的改进方法层出不穷.本文主要对近几年内目标检测领域中一些具有借鉴价值的研究工作进行了整理归纳.首先,对基于卷积神经网络的主要目标检测框架进行了梳理和对比.其次,对目标检测框架中主干网络、颈部连接层、锚点等子模块的设计优化方法进行归纳,给出了各个模块设计优化的基本原则和思路.接着,在COCO数据集上对各类目标检测模型进行测试对比,并根据测试结果分析总结了不同子模块对模型检测性能的影响.最后,对目标检测领域未来的研究方向进行了展望....

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 47; no. 6; pp. 1232 - 1255
Main Authors 蒋弘毅, 王永娟, 康锦煜
Format Journal Article
LanguageChinese
Published 南京理工大学机械工程学院 南京210094 01.06.2021
Subjects
Online AccessGet full text
ISSN0254-4156
DOI10.16383/j.aas.c190756

Cover

More Information
Summary:近年来,基于卷积神经网络的目标检测研究发展十分迅速,各种检测模型的改进方法层出不穷.本文主要对近几年内目标检测领域中一些具有借鉴价值的研究工作进行了整理归纳.首先,对基于卷积神经网络的主要目标检测框架进行了梳理和对比.其次,对目标检测框架中主干网络、颈部连接层、锚点等子模块的设计优化方法进行归纳,给出了各个模块设计优化的基本原则和思路.接着,在COCO数据集上对各类目标检测模型进行测试对比,并根据测试结果分析总结了不同子模块对模型检测性能的影响.最后,对目标检测领域未来的研究方向进行了展望.
ISSN:0254-4156
DOI:10.16383/j.aas.c190756