全球气象预报驱动流域水文预报研究进展与展望

TV11; 全球气象模型及新兴人工智能模型为流域水文预报提供了日、次季节、季节等不同时间尺度的海量气象预报数据.与此同时,基于气象预报开展水文预报,涉及到数据获取、模型构建、评估检验等技术问题.本文以全球气象预报相关的研究计划为切入点,调研现有的1 d至2周小时尺度中短期天气预报、1~60d次季节尺度气象预报、1~12个月季节尺度气象预报以及新兴的人工智能气象预报;梳理气象预报驱动下流域水文预报模型方法,阐述气象预报订正、水文模型设置和预报评估检验等技术环节.基于全球气象预报生成实时和回顾性流域水文预报,定量检验不同预见期下预报精度以评估相关模型方法的预报性能,为水利工程预报-调度实践应用打下...

Full description

Saved in:
Bibliographic Details
Published in水科学进展 Vol. 35; no. 1; pp. 156 - 166
Main Authors 赵铜铁钢, 张弛, 田雨, 李昱, 陈泽鑫, 陈晓宏
Format Journal Article
LanguageChinese
Published 中山大学水资源与环境研究中心,广东广州 510275%大连理工大学水利工程学院,辽宁大连 116024%中国水利水电科学研究院,北京 100038 2024
Subjects
Online AccessGet full text
ISSN1001-6791
DOI10.14042/j.cnki.32.1309.2024.01.014

Cover

Abstract TV11; 全球气象模型及新兴人工智能模型为流域水文预报提供了日、次季节、季节等不同时间尺度的海量气象预报数据.与此同时,基于气象预报开展水文预报,涉及到数据获取、模型构建、评估检验等技术问题.本文以全球气象预报相关的研究计划为切入点,调研现有的1 d至2周小时尺度中短期天气预报、1~60d次季节尺度气象预报、1~12个月季节尺度气象预报以及新兴的人工智能气象预报;梳理气象预报驱动下流域水文预报模型方法,阐述气象预报订正、水文模型设置和预报评估检验等技术环节.基于全球气象预报生成实时和回顾性流域水文预报,定量检验不同预见期下预报精度以评估相关模型方法的预报性能,为水利工程预报-调度实践应用打下坚实的基础.
AbstractList TV11; 全球气象模型及新兴人工智能模型为流域水文预报提供了日、次季节、季节等不同时间尺度的海量气象预报数据.与此同时,基于气象预报开展水文预报,涉及到数据获取、模型构建、评估检验等技术问题.本文以全球气象预报相关的研究计划为切入点,调研现有的1 d至2周小时尺度中短期天气预报、1~60d次季节尺度气象预报、1~12个月季节尺度气象预报以及新兴的人工智能气象预报;梳理气象预报驱动下流域水文预报模型方法,阐述气象预报订正、水文模型设置和预报评估检验等技术环节.基于全球气象预报生成实时和回顾性流域水文预报,定量检验不同预见期下预报精度以评估相关模型方法的预报性能,为水利工程预报-调度实践应用打下坚实的基础.
Abstract_FL Global climate models and emerging artificial intelligence models generate big climate forecasts data for catchment hydrological forecasting at daily,sub-seasonal and seasonal timescales.The utilization of global climate forecasts to drive catchment hydrological models are confronted with the technical issues of climate forecast data retrieval,hydrological forecasting model set-up and verification of hydro-climatic forecasts.Starting with international collaborative research projects on global climate forecasting,this paper conducts a survey of short-term weather forecasts for the next 1 day to 2 weeks,sub-seasonal climate forecasts for the next 1 to 60 days,seasonal climate forecasts for the next 1 to 12 months and artificial intelligence-based climate forecasts.Furthermore,the processes of catchment hydrological forecasting driven by global climate forecasts are illustrated by detailing the technical aspects on the calibration of climate forecasts,the setting-up of hydrological models and the verification of predictive performance.By generating real-time and retrospective catchment hydrological forecasts from global climate forecasts,the efficacy of forecasting models can be quantitatively examined by verifying forecast skill at different lead times,laying a solid basis for practical forecasts-based operations of hydraulic infrastructure.
Author 张弛
陈晓宏
赵铜铁钢
田雨
陈泽鑫
李昱
AuthorAffiliation 中山大学水资源与环境研究中心,广东广州 510275%大连理工大学水利工程学院,辽宁大连 116024%中国水利水电科学研究院,北京 100038
AuthorAffiliation_xml – name: 中山大学水资源与环境研究中心,广东广州 510275%大连理工大学水利工程学院,辽宁大连 116024%中国水利水电科学研究院,北京 100038
Author_FL ZHANG Chi
CHEN Xiaohong
CHEN Zexin
ZHAO Tongtiegang
TIAN Yu
LI Yu
Author_FL_xml – sequence: 1
  fullname: ZHAO Tongtiegang
– sequence: 2
  fullname: ZHANG Chi
– sequence: 3
  fullname: TIAN Yu
– sequence: 4
  fullname: LI Yu
– sequence: 5
  fullname: CHEN Zexin
– sequence: 6
  fullname: CHEN Xiaohong
Author_xml – sequence: 1
  fullname: 赵铜铁钢
– sequence: 2
  fullname: 张弛
– sequence: 3
  fullname: 田雨
– sequence: 4
  fullname: 李昱
– sequence: 5
  fullname: 陈泽鑫
– sequence: 6
  fullname: 陈晓宏
BookMark eNotT81Kw0AY3EMFa-1TCN6yfvvtJs2eRIp_UPCi57KbTaStbMEgijdREXoQD9VLhaogtLcGVLz5MiZp38KUCsMMzGF-VkjJdm1IyBoDygQI3GjTwHZalCNlHCRFQEGBFRAlUmYAzPFqki2Tahy3NACiW5PIy2QzvR3lD9fZpD9NXmdvN1nvfTZO0t4o-7xKh8Ns8pE93S38_KWfj7-mP4M0efz9vi84ex6skqVIncRh9V8r5Ghn-7C-5zQOdvfrWw0nZsUGB1nEIQi0DkG52kih0DUKIxmYSAMqKd1AIHclGqO58DxXa-4JX3q-YL40vELWF7nnykbKHjfb3bNTWzQ2485F-3L-F-ZN_A8DtWTg
ClassificationCodes TV11
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.14042/j.cnki.32.1309.2024.01.014
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
DocumentTitle_FL Research progresses and prospects of catchment hydrological forecasting driven by global climate forecasts
EndPage 166
ExternalDocumentID skxjz202401014
GroupedDBID -01
2B.
4A8
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CCVFK
CW9
PSX
TCJ
TGT
U1G
U5M
UY8
ID FETCH-LOGICAL-s1014-21f30ccbbe0a5bd94a25da2f9cdfb02a995c423592ddb34665bb36489684189d3
ISSN 1001-6791
IngestDate Thu May 29 04:03:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords climate forecasts
全球气象模型
real-time forecasts
回顾性预报
水文预报
气象预报
catchment hydrological model
实时预报
global climate model
forecast verification
预报检验
retrospective forecasts
hydrological forecasts
流域水文模型
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1014-21f30ccbbe0a5bd94a25da2f9cdfb02a995c423592ddb34665bb36489684189d3
PageCount 11
ParticipantIDs wanfang_journals_skxjz202401014
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 水科学进展
PublicationTitle_FL Advances in Water Science
PublicationYear 2024
Publisher 中山大学水资源与环境研究中心,广东广州 510275%大连理工大学水利工程学院,辽宁大连 116024%中国水利水电科学研究院,北京 100038
Publisher_xml – name: 中山大学水资源与环境研究中心,广东广州 510275%大连理工大学水利工程学院,辽宁大连 116024%中国水利水电科学研究院,北京 100038
SSID ssib002257923
ssib023167946
ssj0039382
ssib025872836
ssib051373317
ssib000862358
Score 2.4253328
Snippet TV11; 全球气象模型及新兴人工智能模型为流域水文预报提供了日、次季节、季节等不同时间尺度的海量气象预报数据.与此同时,基于气象预报开展水文预报,涉及到数据获取、模型构...
SourceID wanfang
SourceType Aggregation Database
StartPage 156
Title 全球气象预报驱动流域水文预报研究进展与展望
URI https://d.wanfangdata.com.cn/periodical/skxjz202401014
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1001-6791
  databaseCode: ABDBF
  dateStart: 20160701
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib025872836
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JaxRBFC7iBNSLuOJuQOsUJk5XV3VXnaR60mPw4CmB3EIvMy6BEUwCkpuoCDmIh-glQlQQklsCKt7E_-JMkn_he1U90zXOuMLQVFe99-p7C13L1ELINeklLS9L_KpK0maVy8yrShiGVJtCQuc74zlrmQWyt4OZOX5rXsyPVb45q5ZWltOpbHXkvpL_8SrkgV9xl-w_eLYvFDIgDf6FJ3gYnn_lYxoLKgXVksYhVTUqfRoHNKpRxWksaeRR7dFYUc2o5FgkNdXC5CgsRXZt2IEL0iZHNfBn5USGSwFjOEpOSLWtKzQCA1MpsEcoB-QroOE0klTGTg4IrAON2y12qgNRoItBoqepHiGzFyOmROAPoCkfpdqENEorBnhLWiCsI1ybUFFZEqIKUDvyRGCNsgSQThvskEBzulMkrJwcLZQEuBaitazmqEmpRl9Dg9raMdLottJGIT51w3Ax485hE7t1NZCG1U1a4astVW4OJEDDeBI-iywUlAkHnDVt3AufoKDW4rcKAHqJaEriEINIRg4x2NLEC4KDWmIaGcQ6LqJsEMCk5wVgUQPO0Q_cgWzDFTvRgr4To8Jm2HIuJhAFURCa6iCY65Oe-fvaaaNxFWAQ2kveeo24PfNm4GNlW2RPBE7nzrNX_Az1Gzi0XabjkLUX7035DC9Jx21sjJtDfe0-558OZl9afHR_FUnMfdeHyDgLobNbIeM6mo4aA3MGvrP0ABpQ98xOhkdRqHJOhgkZQpe__y48H69V7c8i-cqXdglHYYXD5GpPg-u_xm_2JLZbSfuO032ePU6OFePeCW0_YifI2Ordk-TIzWZxYv4pcqPzbGvv5ZPuzvr-7ruD90-7ax8Otnc7a1vdT487m5vdnY_d189t_t7b9b3tz_tfNzq7r75_eQHP7puN02SuEc_WZ6rF7S7VJbRXlXktv5ZladqsJSLNFU-YyBNoGrK8BWZIlBIZjPWEYnme-jwIRJr6AZcqkNyTKvfPkEr7Qbt5lkyolkplDYYaII_zViiFynMYmyigk7WEnSNXCuUXiq_30sKg987_keICOYppO_t6kVSWH640L8F4ZDm9XHj8B8aU2Lc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%85%A8%E7%90%83%E6%B0%94%E8%B1%A1%E9%A2%84%E6%8A%A5%E9%A9%B1%E5%8A%A8%E6%B5%81%E5%9F%9F%E6%B0%B4%E6%96%87%E9%A2%84%E6%8A%A5%E7%A0%94%E7%A9%B6%E8%BF%9B%E5%B1%95%E4%B8%8E%E5%B1%95%E6%9C%9B&rft.jtitle=%E6%B0%B4%E7%A7%91%E5%AD%A6%E8%BF%9B%E5%B1%95&rft.au=%E8%B5%B5%E9%93%9C%E9%93%81%E9%92%A2&rft.au=%E5%BC%A0%E5%BC%9B&rft.au=%E7%94%B0%E9%9B%A8&rft.au=%E6%9D%8E%E6%98%B1&rft.date=2024&rft.pub=%E4%B8%AD%E5%B1%B1%E5%A4%A7%E5%AD%A6%E6%B0%B4%E8%B5%84%E6%BA%90%E4%B8%8E%E7%8E%AF%E5%A2%83%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%2C%E5%B9%BF%E4%B8%9C%E5%B9%BF%E5%B7%9E+510275%25%E5%A4%A7%E8%BF%9E%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E6%B0%B4%E5%88%A9%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E8%BE%BD%E5%AE%81%E5%A4%A7%E8%BF%9E+116024%25%E4%B8%AD%E5%9B%BD%E6%B0%B4%E5%88%A9%E6%B0%B4%E7%94%B5%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+100038&rft.issn=1001-6791&rft.volume=35&rft.issue=1&rft.spage=156&rft.epage=166&rft_id=info:doi/10.14042%2Fj.cnki.32.1309.2024.01.014&rft.externalDocID=skxjz202401014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fskxjz%2Fskxjz.jpg